Master Index

for Complete Set: ANSI/HI Pump Standards, Version 4.1

1

ANSI/HI Pump Standards: Version 4.1

Master Index for Complete Set

This index is not part of any standard, but is presented to help the user in considering factors beyond the standards.

Note: Bold numbers indicate the standard number, nonbold numbers indicate the page number; an f. indicates a figure, a t. indicates a table.

```
"Information completed by" categorization, 50.7: 13
                                                                 core data type, 50.7: 24, 27 f., 29
                                                                 core object type, 50.7: 24, 27 f., 29
    See also R/D/S field designations, Work process
      designations
                                                                 document namespaces, 50.7: 26
"U" value, 9.6.8: 11
                                                                 equipment data foundation files, 50.7: 23
    scores, 9.6.8: 15
                                                                 file folder structure, 50.7: 26
Abbreviations and definitions, 50.7: 28
                                                                 for equipment items, 50.7: 23, 24 f.
Abrasion-corrosion, defined, 12.1-12.6: 43
                                                                 getting started with, 50.7: 23
Abrasive fluids and residual mechanical unbalance of
                                                                 namespaces, 50.7: 26, 30
      rotating parts, 9.6.4: 17
                                                                 prerequisites and tools, 50.7: 23
                                                                 structural design, 50.7: 24, 25 f.
Abrasive handling capabilities, 3.1-3.5: 2
Abrasive wear, defined, 12.1-12.6: 43
                                                                 subject type, 50.7: 25, 27 f., 29
Absolute pressure (p_a), 3.6: 3
                                                                 testing conformance to, 50.7: 21
Absolute pressure (p_a), defined, 3.1-3.5: 19
                                                                 use of namespaces, 50.7: 26, 27f., 30
Accelerating deployment of ISO 15926 project, 50.7: 3
                                                                 versions and revisions system, 50.7: 25
Acceleration head, 6.1-6.5: 31-34, 8.1-8.5: 14
                                                                 where to find, 50.7: 23
Acceleration pressure, 6.1-6.5: 31–34, 7.8: 6, 8.1-8.5:
                                                             Affinity rules, 1.3: 69
                                                             Air entrainment, 4.1-4.6: 16, 23
      14
   defined, 7.8: 3
                                                             Air gap, defined, 4.1-4.6: 9, 5.1-5.6: 16
Accelerometers, 9.6.9: 12
                                                             Airborne sound instrumentation
Acceptance level
                                                                 acoustical calibration, 9.1-9.5: 28
Accuracy and performance, defined, 7.8: 3
                                                                 octave-band analyzer, 9.1-9.5: 28
Accuracy, 9.6.9: 27
                                                                 recorders, 9.1-9.5: 28
   alarm limits defined, 9.6.9: 5
                                                                 sound-level meter and microphone system, 9.1-9.5: 28
   defined, 9.6.5: 55
                                                             Airborne sound level test report, 9.1-9.5: 41 f.
   leakage guidelines, 9.6.9: 11
                                                             Airborne sound readings
   power guidelines, 9.6.9: 6
                                                                 averaging, 9.1-9.5: 40
   rate-of-flow guidelines, 9.6.9: 13
                                                                 corrections for background noise, 9.1-9.5: 39 t.
   speed (rpm) guidelines, 9.6.9: 14
                                                                 corrections, 9.1-9.5: 39
   temperature guidelines, 9.6.9: 9
                                                             Air-operated bellows pumps, 10.1-10.5: 1, 2 f.
   vibration guidelines, 9.6.9: 13
                                                                 bellows selection and materials, 10.1-10.5: 13
Acidity, of water, 2.3: 79
                                                                 features, 10.1-10.5: 12
Acoustic sensors, in bearing wear monitoring, 9.6.5: 21
                                                                 handling of harsh chemicals, 10.1-10.5: 12
Actuating mechanism. See Valve gear
                                                                 handling of hot liquids, 10.1-10.5: 12
Adapters, 2.3: 64
                                                                 malfunction causes and remedies, 10.1-10.5: 20, 22 t.
Added mass, defined, 9.6.8: 58
                                                                 typical services, 10.1-10.5: 11
Adhesive wear resistance of wrought materials, 9.1-9.5:
                                                             Air-operated diaphragm pumps, 10.1-10.5: 1 f., 1
                                                                 and rate of flow, 10.1-10.5: 13
AEX XML Schema, 50.7: 1, 2, 29
                                                                 diaphragm selection and materials, 10.1-10.5: 13
   and construction materials and properties, 50.7: 24
                                                                 features, 10.1-10.5: 12
   and W3C schema namespace declaration, 50.7: 26
                                                                 handling of hazardous liquids, 10.1-10.5: 11
   and XPaths, 50.7: 28
                                                                 liquids and slurries handled, 10.1-10.5: 11
   and XSD file names and associated namespaces,
                                                                 malfunction causes and remedies, 10.1-10.5: 20, 21 t.
      50.7: 27
                                                                 pump controls, 10.1-10.5: 13
   collection-container type, 50.7: 25, 27f., 29
                                                                 pumping of dry powders, 10.1-10.5: 12
   content, 50.7: 23
                                                                 typical applications, 10.1-10.5: 11
```

٩ir	operated pump tests, 10.6 : 1	net positive suction head test, 10.6: 7, 7f., 8
	air consumption, defined, 10.6 : 6	noise testing, 10.6 : 12
	air consumption, measurement of, 10.6 : 14	normal cubic meter per minute, 10.6 : 6
	cavitation, defined, 10.6 : 6	performance tests, 10.6 : 6, 7, 7f., 8, 8f.
	cycle rate (<i>n</i>) defined, 10.6 : 3	pressure (p), defined, 10.6 : 4
	cycle rate (n), measurement of, 10.6 : 14	pressure (p), measurement of, 10.6 : 14, 15f.
	cycle, defined, 10.6 : 3	pressure (p), tap location, 10.6 : 14
	datum, defined, 10.6 : 4	priming. see suction lift
	definitions, 10.6: 1	rate of flow (capacity) (Q), defined, 10.6 : 3
	displacement per stroke (D), defined, 10.6 : 4	rate of flow (capacity) (Q), measurement of, 10.6 : 16
	dry suction lift defined, 10.6 : 9	rated condition point, 10.6 : 1
	dry suction lift, water lift test method, 10.6 : 10	specific weight (γ) of water, defined, 10.6 : 3
	dry suction lift, vacuum gauge test method, 10.6 : 10	speed (cycle rate) measurement, 10.6 : 15
	dry suction lift, vacuum gauge with enclosed tank test	standard cubic feet per minute (SCFM), defined, 10.6 :
	method, 10.6 : 10	6
	effective diaphragm area (AEFF), definition and	stroke length (L), defined, 10.6 : 3
	equation, 10.6 : 4, 4f.	subscripts, 10.6: 3t.
	elevation head (Z), defined, 10.6: 5	suction lift (priming), defined, 10.6 : 5
	elevation pressure (pz), defined, 10.6 : 4	suction lift testing, 10.6 : 9, 10, 10f.
	gauge pressure (pg), defined, 10.6 : 4	symbols, 10.6 : 2t.
	hydrostatic test, on components or assembled pumps,	temperature measurement, 10.6 : 16
	10.6: 11	test instrumentation. see instrumentation
	hydrostatic test, parameters, 10.6 : 11	total head (pH), definition and equation, 10.6 : 5
	hydrostatic test, procedure, 10.6 : 11	types of, 10.6 : 1
	instrumentation, 10.6 : 12	velocity pressure (pv), definition and equation, 10.6 : 5
	instrumentation, acceptable fluctuation and accuracy,	volume, standard units of, 10.6 : 3
	10.6 : 13, 13t.	wet suction lift, test methods, 10.6 : 10, 11
	instrumentation, calibration intervals, 10.6 : 12, 13t.	Air-operated pumps, 10.1-10.5 : 1
	instrumentation, for air consumption measurement,	acceleration head (h_{acc}) , calculations, 10.1-10.5 : 9
	10.6 : 14, 15	acceleration head (h_{acc}) , defined, 10.1-10.5 : 9
	instrumentation, for pressure measurement, 10.6 : 14,	acceleration pressure (p_{acc}) , calculations, 10.1-10.5 : 9
	15f.	acceleration pressure (p_{acc}) , defined, 10.1-10.5 : 9
	instrumentation, for rate of flow (capacity)	air chamber, 10.1-10.5 : 2
	measurement, 10.6 : 16	air consumption, defined, 10.1-10.5 : 10 air distribution system, 10.1-10.5 : 2
	instrumentation, for speed (cycle rate) measurement, 10.6 : 15	ball check valves, 10.1-10.5 : 4 f.
	instrumentation, for temperature measurement, 10.6 :	bellows, 10.1-10.5 : 3
	16	datum, defined, 10.1-10.5 : 6
	instrumentation, pressure tap location, 10.6 : 14	cavitation, defined, 10.1-10.5 : 7
	maximum allowable air inlet pressure, defined, 10.6 : 4	check valves, 10.1-10.5 : 4, 4 f.
	maximum allowable discharge pressure, defined, 10.6 :	colloidal liquids, defined, 10.1-10.5 : 11
	4	compressed-air properties definitions, 10.1-10.5 : 10
	maximum allowable suction pressure ($p_{s max}$), defined,	condensation, defined, 10.1-10.5 : 10
	10.6 : 5	cycle rate (<i>n</i>), defined, 10.1-10.5 : 4
	mechanical test, 10.6 : 6	cycle, defined, 10.1-10.5 : 4
	net positive inlet pressure available (NPIPA), definition	datum, defined, 10.1-10.5 : 6
	and equation, 10.6 : 5	definitions, 10.1-10.5 : 4
	net positive inlet pressure required (NPIPR) test, 10.6 :	design, 10.1-10.5 : 11-14
	7f, 8, 8f, 9	dew point, defined, 10.1-10.5 : 10
	net positive inlet pressure required (NPIPR), defined,	diaphragm with integral outer plate, 10.1-10.5 : 3 f., 3
	10.6 : 6	diaphragm, 10.1-10.5 : 2
	net positive suction head available (NPSHA), definition	diaphragm, inner and outer plates, 10.1-10.5 : 3
	and equation, 10.6 : 5	dilatant liquids, defined, 10.1-10.5 : 11
	net positive suction head required (NPSHR) test, 10.6:	discharge manifold, 10.1-10.5: 3
	7f., 8, 8f., 9	discharge pressure (pd), defined, 10.1-10.5: 6
	net positive suction head required (NPSHR), defined,	displacement per stroke (D), defined, 10.1-10.5: 6
	10.6 : 6	dlap check valves, 10.1-10.5 : 4 f.

```
Air-operated pumps — Continued
                                                                 saturation vapor pressure, defined, 10.1-10.5: 10
   dry suction lift, defined, 10.1-10.5: 7
                                                                 SCFM. see standard cubic feet per minute
   duplex, 10.1-10.5: 2
                                                                 simplex, 10.1-10.5: 2
   effective diaphragm area (A_{FFF}), defined, 10.1-10.5:
                                                                 specific gravity, and effect on pump performance,
                                                                    10.1-10.5: 14
   elastomer shelf life, 10.1-10.5: 20
                                                                 standard cubic feet per minute (SCFM), defined, 10.1-
   flooded suction, defined, 10.1-10.5: 7
                                                                    10.5: 10
   friction loss pressure (p_f), defined, 10.1-10.5: 7
                                                                 storage, 10.1-10.5: 20
   handling of hazardous liquids, 10.1-10.5: 11
                                                                 stroke length (L), defined, 10.1-10.5: 4
   handling of hot liquids, 10.1-10.5: 12
                                                                 submerged suction, defined, 10.1-10.5: 7
   inlet air pressure (p_i), defined, 10.1-10.5: 6
                                                                 subscripts, 10.1-10.5: 4, 6 t.
   inlet manifold, 10.1-10.5: 3
                                                                 suction conditions, 10.1-10.5: 7
   inspection, before installation, 10.1-10.5: 15
                                                                 suction lift (priming), defined, 10.1-10.5: 7
   inspection, for maintenance, 10.1-10.5: 20
                                                                 suction pressure (p_s), defined, 10.1-10.5: 7
                                                                 symbols, 10.1-10.5: 4, 5 t.
   installation, 10.1-10.5: 14-16, 16 f., 17, 17f.
   liquid chamber, 10.1-10.5: 3
                                                                 temperature, 10.1-10.5: 10
   liquid properties, 10.1-10.5: 11
                                                                 terms, 10.1-10.5: 4, 5 t.
   liquids and slurries handled, 10.1-10.5: 11
                                                                 thixotropic liquids, defined, 10.1-10.5: 11
   maintenance, 10.1-10.5: 20, 21t., 22t.
                                                                 total differential pressure (pH), defined, 10.1-10.5: 7
   maximum allowable air inlet pressure, defined, 10.1-
                                                                 total suction lift, defined, 10.1-10.5: 8
                                                                 types, 10.1-10.5: 1, 1 f.
      10.5: 6
   maximum allowable discharge pressure, defined, 10.1-
                                                                 typical services, 10.1-10.5: 11
                                                                 units, 10.1-10.5: 4, 5 t.
   maximum allowable suction pressure (p_{s max}), defined,
                                                                 viscosity, 10.1-10.5: 11, 14
                                                                 wet suction lift, 10.1-10.5: defined, 8
      10.1-10.5: 7
   maximum cycle rate, defined, 10.1-10.5: 4
                                                                 wetted path housings, 10.1-10.5: 3
   maximum operating temperature (t_{max}), defined, 10.1-
                                                             Alarm limit. 9.6.5: 4
                                                             Alignment, 3.1-3.5: 58
      10.5: 10
    minimum operating temperature (t_{min}), defined, 10.1-
                                                             Alkalinity, of water, 2.3: 79
      10.5: 10
                                                             Allowable bearing housing vibration pump types BB and
   net positive inlet pressure available (NPIPA), defined,
                                                                    OH. 9.6.4: 8 f.
                                                                 at speeds above 600 rpm, 9.6.4: 7, 8 f., 9 f.
      10.1-10.5: 8
   net positive inlet pressure required (NPIPR), defined,
                                                                 at speeds of 600 rpm and below, 9.6.4: 10 t.
                                                                 pump types VS1, VS2, VS3, VS4, VS5, VS6, VS7,
      10.1-10.5: 8
   net positive suction head (NPSH) terminology, 10.1-
                                                                    VS8, 9.6.4: 8 f.
      10.5: 8
                                                                 slurry pump types, 9.6.4: 9 f.
   net positive suction head available (NPSHA), defined,
                                                                 solids-handling pump types, 9.6.4: 9 f.
                                                             Allowable imbalance, 9.6.8: 32
      10.1-10.5: 8
   net positive suction head required (NPSHR), defined,
                                                             Allowable operating range, defined, 1.1-1.2: 71, 2.1-2.2:
                                                                    34, 12.1-12.6: 35
      10.1-10.5: 8
   Newtonian liquids, defined, 10.1-10.5: 11
                                                             Allowable operating region (AOR), 9.6.3: 2
   nomenclature, 10.1-10.5: 2
                                                                 and bearing life, 9.6.3: 3
   NPIPA. See net positive inlet pressure available
                                                                 and dip (in head vs. rate-of-flow curve), 9.6.3: 6, 7f.
   NPIPR. See net positive inlet pressure required
                                                                 and droop (in head vs. rate-of-flow curve), 9.6.3: 5-6,
   NPSH. See net positive suction head
                                                                    6f.
   NPSHA. See net positive suction head available
                                                                 and factory test, 9.6.3: 2
   NPSHR. See net positive suction head required
                                                                 and hydraulic loads, 9.6.3: 3
   operation, 10.1-10.5: 17, 18 f., 19
                                                                 and internal mechanical contact, 9.6.3: 4
   pressures terminology, 10.1-10.5: 6
                                                                 and liquid velocity. 9.6.3: 5
   priming, see suction lift
                                                                 and noise. 9.6.3: 4
   pulsation dampeners, 10.1-10.5: 10
                                                                 and NPSH margin, 9.6.3: 5, 5f.
   pulsation dampeners, 10.1-10.5: 10
                                                                 and power limit, 9.6.3: 4
   pumping of dry powders, 10.1-10.5: 12
                                                                 and pump size. 9.6.3: 8
   rate of flow (capacity) (Q), defined, 10.1-10.5: 4
                                                                 and service life, 9.6.3: 2
   rate of flow terminology, 10.1-10.5: 4
                                                                 and shaft fatigue life, 9.6.3: 3
   relative humidity, defined, 10.1-10.5: 10
                                                                 and shaft seal life, 9.6.3: 4
   safety, 10.1-10.5: 19
                                                                 and suction recirculation, 9.6.3: 7–8, 8f.
```

Allowable operating region (AOR) — Continued	maximum forces and moments for use with Equation
and temperature rise, 9.6.3 : 4	Set 2, 9.6.2 : 7t.
and thrust reversal, 9.6.3 : 4	maximum forces and moments for use with Equation
and vibration, 9.6.3 : 4	Set 3, 9.6.2 : 8t.
defined, 9.6.3 : 2	maximum forces and moments for use with Equation
factors affecting, 9.6.3 : 2–8	Set 4, 9.6.2 : 8t.
Alnico magnet, defined, 5.1-5.6 : 17	metallic pump adjustment of maximum forces and
Alnico, defined, 4.1-4.6 : 10	moments, 9.6.2 : 5
Aluminum, 9.1-9.5 : 21	metallic pump combined force/moment capability,
alloy 319, 9.1-9.5 : 21	9.6.2 : 5
alloy 355, 9.1-9.5 : 21	metallic pump load capability, 9.6.2 : 5
alloy 356, 9.1-9.5 : 21	metallic pump temperature and material adjustment
alloy 7075 (Al-Zn-Mg-Cu-Cr), 9.1-9.5 : 22	values, 9.6.2 : 10t.
alloy ASTM B211, alloy 2011, 9.1-9.5 : 22	metallic pumps, 9.6.2 : 5
alloy ASTM B211, alloy 6061, 9.1-9.5 : 22	ANSI/ASME B73.1 pumps
alloy B750, 9.1-9.5 : 22	example assessments of applied nozzle loads (1.5×1-8
alloy C-355-T6, 9.1-9.5 : 21	CF8M Type 316, 9.6.2 : Class 150 flanges, at 100
alloy TP-220-T4, 9.1-9.5 : 21	°F, fully grouted metal baseplate), 9.6.2 : 24
aluminum copper (Al/Cu) SAE AA2017, 9.1-9.5 : 22	example assessments of applied nozzle loads (1.5×1-
compatibility with other materials, 9.1-9.5 : 21	8, material with a modulus of elasticity greater than
tenzalloy, 9.1-9.5 : 22	1.0 × 106, at 110 °F, fully grouted nonmetal
American Bearing Manufacturers Association, 5.1-5.6 : 46	baseplate), 9.6.2 : 29
American Petroleum Institute, 5.1-5.6 : 46	example assessments of applied nozzle loads (3×1.5-
American Society for Heating, Refrigerating, and Air-	13 Alloy 20, Class 300 flanges, at 400 °F, fully
Conditioning Engineers (ASHRAE), 50.7 : 3	grouted metal baseplate), 9.6.2 : 27
American Society for Testing and Materials, 5.1-5.6 : 48	ANSI/ASME B73.1 Specification for Horizontal End
American Society of Mechanical Engineers (ASME)	Suction Centrifugal Pumps for Chemical Process,
standards, 9.8: 51	50.7 : 1, 3, 8
American Society of Mechanical Engineers, 5.1-5.6 : 46	ANSI/ASME B73.2 pumps
Amplification chart, 9.6.8 : 85f.	example assessments of applied nozzle loads
Amplification factor, defined, 9.6.8 : 58	(4030/28, 2-in discharge, 13-in nominal impeller,
Analyses beyond scope of document, 9.6.8 : 7	Alloy 20, Class 300 flanges, at 400 °F), 9.6.2 : 33
Analysis complexity levels, 9.6.8 : 28t.	example assessments of applied nozzle loads (size 2015/17, 1.5-in discharge, 8-in nominal impeller,
Analysis level 3 elements, 9.6.8 : 36	CF8M Type 316, Class 150 flanges, at 100 °F),
limitations, 9.6.8 : 36	9.6.2 : 32
Analysis level definitions, 9.6.8 : 33	ANSI/ASME B73.2 Specification for Vertical In-Line
level 1, 9.6.8 : 33	Centrifugal Pumps for Chemical Process, 50.7 : 1, 3,
level 2, 9.6.8 : 34	8
level 3, 9.6.8 : 36	ANSI/ASME B73.3 sealless pump assessment of applied
Analysis levels introduction, 9.6.8 : 27	nozzle loads, 9.6.2 : 8
See also Levels of analysis	ANSI/HI 1.6 Centrifugal Pump Tests, 14.6 : 1
types, 9.6.8 : 27	ANSI/HI 11.6 Submersible Pump Tests, 14.6: 1
Analysis reporting format, 9.6.8 : 92	ANSI/HI 2.6 Vertical Pump Tests, 14.6 : 1
Analysis, 40.6 : 11	ANSI/HI 5.1–5.6 Sealless Rotodynamic Pumps for
translation of the test results into data based on the	Nomenclature, Definitions, Design, Application,
specified speed of rotation (or frequency), 40.6 : 11	Operation, and Test, 14.6 : 1
translation of the test results to the rated speed of	Anti-reverse rotation devices, 2.3 : 27
rotation, 40.6 : 11	API 610 Standard for Centrifugal Pumps for Petroleum,
Angular momentum, 1.3 : 1	Petrochemical and Natural Gas Industries, 50.7 : 1,
Annular seal, defined, 9.6.8 : 58	3, 8
ANSI/ASME B73.1 pump assessment of applied nozzle	additional data to support data sheet, 50.7 : 14
loads, 9.6.2 : 5	and HI-EDE implementation, 50.7 : 20
composite pumps, 9.6.2 : 8	data sheet, 50.7 : 8, 9 f.
Equation Sets 1-5, 9.6.2 : 5t.	See also R/D/S/A compliance
maximum forces and moments for use with Equation	API double suction pumps, 20.3 : 5 t.
Set 1, 9.6.2 : 6t.	API end suction pumps, 20.3 : 5 t.

API Plan 02, 12.1-12.6 : 84	123f., 124f., 125f.
API Plan 11, 12.1-12.6 : 84	type OH pumps as self-priming pumps, 1.3: 120
API Plan 32, 12.1-12.6 : 84	Approach pipes, 9.8: 77
API Plan 52, 12.1-12.6 : 84	maximum allowable flow rates, 9.8 : 78t., 79t.
API Plan 53, 12.1-12.6 : 84	schematic diagram of, 9.8: 77f.
API Plan 54, 12.1-12.6 : 84	Approval process
API Plan 62, 12.1-12.6 : 85	applicable standards, 40.7 : 3
API Standard 610 (impellers), 1.3: 35	application approved, 40.7: 3
API-type, single-stage, end suction process pump, 20.3: 3	application for approval, 40.7: 3
Apparent viscosity, 6.1-6.5 : 34	application rejected, 40.7: 3
Apparent viscosity, defined, 3.1-3.5 : 37, 12.1-12.6 : 38	approval decision, 40.7: 5
Appeals, 40.7 : 8	approval denied, 40.7: 5
Application considerations, 4.1-4.6 : 14	approval granted upon remedy of nonconformities,
bearings, 4.1-4.6 : 18	40.7 : 5
containment shell thickness and materials, 4.1-4.6 : 18	audit flowchart, 40.7 : 17 f.
coupling selection, 4.1-4.6 : 15	confidentiality, 40.7 : 4
entrained air or gas, 4.1-4.6 : 16	demonstrations of pump testing procedures, 40.7 : 5
high viscosity, 4.1-4.6 : 16	documents needed for audit, 40.7: 16
liquid classification, 4.1-4.6 : 17	general, 40.7 : 3
liquid properties, 4.1-4.6 : 15	languages used, 40.7 : 4
liquid vapor pressure, 4.1-4.6 : 16	on-site assessment, 40.7: 4
low viscosity, 4.1-4.6 : 16	opening meeting, 40.7 : 4
lubricating liquid, 4.1-4.6: 17	records review, 40.7 : 5
magnets, 4.1-4.6 : 15, 4.1-4.6 : 18	renewal of approval, 40.7 : 6
materials, 4.1-4.6 : 18	role of Auditor, 40.7: 4
mechanical safety, 4.1-4.6 : 19	staff interviews, 40.7 : 5
monitoring devices, 4.1-4.6 : 19	Aqueducts, 9.8 : 108
nonlubricating liquid, 4.1-4.6 : 17	ASME B73 (baseplates), 1.3 : 101, 101f.
off-design rating procedures, 4.1-4.6 : 17	ASME B73 pumps, 20.3 : 5 t.
particles, 4.1-4.6 : 16	ASME B73.1 (impellers), 1.3 : 35
pump, 4.1-4.6 : 18	Asynchronous, defined, 9.6.8 : 58
safety, 4.1-4.6 : 18	ATEX Certification, 1.4: 8, 2.4: 8
shear sensitivity, 4.1-4.6 : 17	Atmospheric head (<i>h</i> _{atm}),
specific gravity, 4.1-4.6 : 16	defined, 2.1-2.2 : 33, 70, 11.6 : 10, 12.1-12.6 : 35
specific heat, 4.1-4.6 : 16	Attainable efficiency example (metric units)
stripping applications, 4.1-4.6 : 17	Attainable efficiency example (US customary units) single
temperature, 4.1-4.6 : 15	stage, end suction, solids-handling submersible
variable viscosity, 4.1-4.6 : 16	sewage type pump, 20.3 : 4
viscosity, 4.1-4.6 : 15	Audit flowchart, 40.7 : 17 f.
Application guidelines, 5.1-5.6 : 33, 8.1-8.5 : 13	Audit requirements changes to, 40.7 : 7 t.
canned motor or magnet component temperature, 5.1-	Auditor, defined, 40.7: 1
5.6 : 38	Austenitic stainless steels, 12.1-12.6 : 67
containment expectations, 5.1-5.6 : 33	Auxiliary drive (steam) valve, 8.1-8.5 : 6
pump selection, 5.1-5.6 : 36	Auxiliary storage, 9.8 : 76–77
safety considerations, 5.1-5.6 : 34	Average particle size (d50), 12.1-12.6 : 39t.
sealless pump advantages, 5.1-5.6 : 33	defined, 12.1-12.6 : 39
sealless pump limitations, 5.1-5.6 : 33	Axial flow impeller, 2.1-2.2 : 19, 2.3 : 6, 6 f., 9
unit design and circulation plan selection and	Axial flow pumps, 1.1-1.2 : 10 f., 11, 11 f.
application, 5.1-5.6 : 33	Axial load, 1.3 : 34
uses of sealless pumps, 5.1-5.6 : 33	Axial load, defined, 5.1-5.6 : 14
Applications, 1.3 : 113, 12.1-12.6 : 44–45	Axial piston pumps, 3.1-3.5 : 1f., 3t., 4t., 5f., 6f., 14f.
booster service, 1.3: 114	description, 3.1-3.5 : 7
dry pit (nonclog) pumps, 1.3 : 117, 118f.	fixed displacement, 3.1-3.5 : 8
pump as turbine (PAT), 1.3 : 114, 115f., 117	range chart, 3.1-3.5 : 8
self-priming pumps, 1.3 : 119, 120f., 121f., 123	variable displacement, 3.1-3.5 : 8
transfer pumping, 1.3 : 113	Axial split case pumps (single-stage double suction and
two-phase pumping (liquid and gas), 1.3: 122, 122f.,	two-stage single suction)

example assessments of applied nozzle loads (4-in discharge, 7/8-in hold-down bolts, cast-iron class	excessive looseness between impeller hub and balancing arbor, 9.6.4 : 16
125 flanges), 9.6.2 : 34	Bare rotor
Axial thrust	defined, 2.1-2.2 : 43
calculation for axial flow pump impellers, 1.3 : 31	terms, 2.1-2.2 : 41
calculation for enclosed impeller with plain back	Bare trenches, performance of, 9.8 : 81, 82f.
shroud, 1.3 : 23f., 23, 26	Barometric pressure, 6.1-6.5 : 28t., 28, 8.1-8.5 : 11
calculation for impeller with back ring, 1.3 : 25f., 25, 27	and altitude, 8.1-8.5 : 11, 12t.
calculation for impellers, 1.3 : 21	Barrel design. See Pump type BB4
calculation for semi-open impellers, 1.3 : 29, 29f.	Barrel or can (line shaft) pumps, 2.1-2.2: 11
calculation of axial force due to momentum change,	Barrier fluid flow leakage monitoring, 9.6.9 : 10, 10t.
1.3 : 31	Barrier fluid, defined, 12.1-12.6: 38
on enclosed impellers, 1.3 : 21, 21f.	Baseline measurements, 9.6.5 : 3
Axial thrust factor (K_A) , 1.3 : 22, 22f.	Baseline, 9.6.9 : 27
Axial thrust, 2.3 : 8, 9 f.	Baseline, defined, 9.6.5 : 55
calculating by manufacturer's thrust factor method,	Baseplates, 1.3: 94
2.3 : 14	selection parameters, 1.3: 95t.
calculating for impellers with back rings (at BEP),	alignment blocks or guides for thermal expansion o
2.3 : 13	the pump case, 1.3 : 108
calculating for impellers with no back rings (at BEP),	coupling alignment, 1.3 : 107
2.3 : 11, 12 f.	drip rims, 1.3 : 108
calculating, 2.3: 9	epoxy grouting, 1.3 : 108
shaft upthrust force from enclosed suction can pumps,	fasteners, 1.3 : 108
2.3 : 10 f., 10	formed polymer, 1.3 : 102, 103f.
shaft upthrust force from shaft sleeves through	freestanding, 1.3 : 99, 100f.
packing or mechanical seals, 2.3 : 10, 11 f.	functional requirements, 1.3 : 95, 95t.
shaft upthrust force from shaft sleeves through	grout holes, 1.3 : 109
pressure breakdown bushings, 2.3 : 10, 11 f.	grouted, 1.3 : 97, 97f., 98f.
static component of, 2.3 : 10	jacking pads and screws, 1.3 : 108
terminology, 2.3 : 8	leveling screws, 1.3 : 108
versus rate of flow, 2.3 : 14, 15 f.	lifting requirements, 1.3 : 108
Axially split one- and two-stage pumps (BB1)	nongrout, 1.3 : 97, 98f.
assessment of applied loads, 9.6.2 : 17	offshore skid type, 1.3 : 104, 105f.
casing hold-down bolts, 9.6.2 : 17	oil pipeline skid type, 1.3 : 104, 105f.
coordinate system, 9.6.2 : 16f.	pedestal, 1.3 : 103, 104f.
criteria for loading allowances, 9.6.2 : 16	polymer, 1.3 : 102
definitions, 9.6.2 : 15	pregrouted, 1.3 : 98, 99f.
driver/pump coupling arrangement, 9.6.2 : 16	shims and fasteners, 1.3 : 108
effect of nozzle loading on hold-down bolts, 9.6.2 : 17	slide-bearing, 1.3 : 100, 100f.
limiting factors, 9.6.2 : 16	sloped deck plates, 1.3 : 108
maximum forces and moments to assess applied loads	soleplates, 1.3 : 99, 100f.
based on hold-down bolts, 9.6.2 : 18t.	solid polymer concrete, 1.3 : 103, 103f.
maximum forces and moments to assess applied loads	standards, 1.3 : 101, 101f., 102f.
based on nozzle stress, 9.6.2 : 18t.	stress and rigidity requirements, 1.3 : 107
scope, 9.6.2 : 15	three-point mount, 1.3 : 106, 106f.
b_2 . See Impeller width at discharge (b_2) Barrier fluid, 1.3 :	tolerancing, 1.3 : 107
63	types, 1.3 : 96
Back pull-out assembly, defined, 1.1-1.2 : 42, 43 f.	BB1-BB5. See Pump type BB1-Pump type BB5
Backpressure valves, 7.8 : 12	Bearing arrangements, 1.3 : 31
Balance machines, 9.6.4 : 13	Bearing bushings, 2.3 : 16
weight rating, 9.6.4 : 14	in adapters, 2.3 : 64
Balancing	intermediate, 2.3: 64
and inherent balance, 9.6.4: 15	losses due to viscosity, 2.3: 50
and keys and keyways in balancing arbors, 9.6.4: 16	Bearing housing
and removal or addition of material, 9.6.4: 17	and temperature monitoring, 9.6.9: 7
and runout in balancer drive or balancing arbor, 9.6.4:	and vibration monitoring, 9.6.9 : 12
15	Bearing housing closures, 2.3 : 26

Bearing housings, 2.3: 64, 73	liquid film, temperature monitoring, 9.6.5 : 7
acceleration in vibration monitoring, 9.6.5: 15	low level of lubricant, 1.3: 55
vibration control limits, 9.6.5: 15–16	lubrication methods, 1.3 : 43
vibration monitoring, 9.6.5 : 15, 16	lubrication, 1.3: 53
Bearing isolators, 2.3 : 26	lubrication, 2.3: 19
Bearing materials, 4.1-4.6 : 18	material adjustment factor, a2, 1.3: 48
Bearing wear monitoring, 9.6.5 : 20	minimum load, 1.3: 46
by acoustic sensors, 9.6.5 : 21	modified rating life, L _{nm} , 1.3 : 48, 50
by contact or continuity switches, 9.6.5 : 21	moisture elimination in lubricants, 1.3 : 57
by power monitors, 9.6.5 : 21	oil lubrication, 1.3: 54
by proximity sensing devices, 9.6.5 : 21	operating conditions adjustment factor, a3, 1.3: 48
by temperature probes, 9.6.5 : 21	outboard (antifriction), 2.3 : 73
by vibration sensors, 9.6.5 : 21	outboard, 2.3 : 64
carbon bearings, 9.6.5 : 21	particle contamination of lubricants, 1.3: 56
component contact detection, 9.6.5: 21	pivot-shoe thrust bearings, 1.3: 45, 45f.
control limits, 9.6.5: 22	product lubrication, 1.3 : 55
detection methods, 9.6.5: 21	quality of lubrication, 1.3: 55
of plain bearings in sealless pumps, 9.6.5 : 20	quality of oil, 1.3 : 55
progressive monitoring, 9.6.5 : 21	quantity improvement of lubricants, 1.3: 56
silicon carbide bearings, 9.6.5 : 21	radial load, <i>F_p</i> , 1.3 : 47
Bearing whip, defined, 9.6.8 : 58	reliability adjustment factor, a1, 1.3: 48
Bearing whirl, defined, 9.6.8 : 58	reliability, 1.3 : 47
Bearing, defined, 3.1-3.5: 16	retainer, 2.3 : 64
Bearings, 1.3 : 43, 12.1-12.6 : 69–71	roller bearings, 1.3 : 46f.
adjusted rating life, <i>L_{na}</i> , 1.3 : 47, 50, 50t.	rolling element bearing failure, 9.6.9 : 5, 15t.
air entrainment in lubricants, 1.3 : 56	rolling element bearings, 1.3: 44, 44t.
and contact seals, 12.1-12.6 : 69	rolling element defects, 9.6.9 : 12
and labyrinth seals, 12.1-12.6 : 69, 70f.	rolling element temperature monitoring, 9.6.9 : 7
and lip seals, 12.1-12.6 : 69, 69f.	rolling element, defects in vibration monitoring, 9.6.5 :
axial adjustment of housing, 12.1-12.6 : 92	15
axial load, <i>F_a</i> , 1.3 : 47	sleeve bearing failure, 9.6.9 : 5
ball bearings, 1.3 : 46f.	sleeve bearing temperature monitoring, 9.6.9 : 7
basic dynamic radial load rating, C _r , 1.3 : 47	sleeve bearings, 1.3 : 44, 45f.
basic rating life, <i>L</i> ₁₀ , 1.3 : 47, 49	spacing, 2.3 : 19
contamination factor, η_c , 1.3 : 51, 52t.	temperature, 1.3 : 53
contamination prevention in lubricants, 1.3 : 56	thrust, 9.6.9 : 7
cylindrical-type radial journal (sleeve) bearings, 1.3 :	type BB4 multistage radial split single casing pump,
45f.	1.3: 46f.
degradation improvement in lubricants, 1.3 : 57	water contamination of lubricants, 1.3 : 56
dynamic equivalent radial load, P_n 1.3 : 47 factors, 1.3 : 48	Bell inlet velocity, 9.8 : 42
failure mode indicated by temperature monitoring,	Bell intake shape, 9.8 : 93, 94f. BEP rate of flow $[Q_{opt}]$, defined, 1.1-1.2 : 68, 2.1-2.2 : 30
9.6.9: 7	BEP. See Best efficiency point
failure mode indicated by vibration monitoring, 9.6.9 :	Best efficiency point (BEP) $[Q_{opt}]$, 1.3 : 1, 15, 9.6.3 : 1,
12	9.6.8 : 58, 12.1-12.6 : 64, 64t.
fatigue life, 12.1-12.6 : 71, 71t.	axial load for multistage pumps, 1.3 : 34
fatigue limit load, C_{μ} , 1.3 : 51	defined, 1.1-1.2 : 71, 2.1-2.2 : 34, 2.3 : 41, 11.6 : 7, 12.1
friction losses due to viscosity, 2.3 : 50	12.6 : 35
grease lubrication, 1.3 : 53	operation above, 2.3 : 41
heat and oil oxidation, 1.3 : 56	operation below, 2.3 : 41
heat stabilization temperature, 1.3 : 53	values, 20.3 : 1
high level of lubricant, 1.3 : 55	Best efficiency point (BEP), and NPSH margin, 9.6.1 : 4,
hydrodynamic radial, 9.6.9 : 7	4f.
isolators, 12.1-12.6 : 70, 70f.	Between-bearings (BB) type, 1.3 : 1, 33, 33f., 110, 112f.
life (horizontal pumps), 1.3 : 46	double suction pumps, 1.3 : 33, 34f.
life modification factor, a_{XVZ} , 1.3 : 49	multistage pumps, 1.3 : 34, 34f.
life, 1.3 : 48	operation away from, 1.3 : 71

Between-bearings (BB) type — Continued radial load for multistage pumps, 1.3 : 34	Canned motor pump cooling and lubrication, 5.1-5.6 : 1 end suction, 5.1-5.6 : 2
shaft support for multistage pumps, 1.3 : 34 Between bearings, multistage, axially split pump, 1.1-1.2 :	end suction, overhung impeller, 5.1-5.6 : 4f. in-line, 5.1-5.6 : 2
31 f.	motor and pump separated by thermal barrier (plan
Between bearings, multistage, radially split, double casing pump, 1.1-1.2 : 33 f.	123), 5.1-5.6 : 55f. motor insulation temperature limits, 5.1-5.6 : 38t.
Between bearings, multistage, radially split, single casing pump, 1.1-1.2 : 32 f.	multistage end suction, 5.1-5.6 : 54 multistage, 5.1-5.6 : 57f.
Between bearings, single stage, axially split pump, 1.1-1.2 : 29 f.	retrofit end suction design, 5.1-5.6 : 54 retrofit with external circulation, 5.1-5.6 : 56f.
Between bearings, single stage, radially split pump, 1.1-	reverse circulation (plan 113), 5.1-5.6 : 55f.
1.2 : 30 f.	reverse circulation end suction (circulation plan 113)
Between-bearing impeller pumps icons, 1.1-1.2 : 78 f.–79 f.	design, 5.1-5.6 : 54
Between-bearing pump defined, 9.6.8 : 27	self-priming end suction, 5.1-5.6 : 54
Bibliography, 9.1-9.5 : 44, 9.6.7 : 27	self-priming, 5.1-5.6 : 57f.
Body, defined, 3.1-3.5 : 16	separated pump and motor end suction (circulation
Bolted couplings, 2.3 : 29	plan 123) design, 5.1-5.6 : 54
Boltproof load, defined, 5.1-5.6 : 18	vertical in-line, 5.1-5.6 : 5f.
Bowl assembly efficiency (η_{ba}), defined, 2.1-2.2 : 37	vertical submerged, 5.1-5.6 : 2, 6f.
Bowl assembly input power (P_{ba}), defined, 2.1-2.2 : 36	Cantilever shaft design sump pump (VS5), 2.1-2.2 : 10 f.
Bowl assembly total head (H_{ba}), defined, 2.1-2.2 : 33, 40.6 :	Cantilevered wet pit, defined, 12.1-12.6: 3
17	Canvas packing, 8.1-8.5 : 20
Bowl assembly total head determination for vertically	Capability table (metric), 3.1-3.5 : 3t.
suspended pumps, 14.6 : 33 f. , 40.6 : 19 f.	Capability table (US customary units), 3.1-3.5 : 4t.
with a closed suction, 14.6 : 37 f. , 40.6 : 20 f.	Capability tables, 3.1-3.5 : 2
Bowl efficiency	Capacity
and losses due to viscosity, 2.3 : 50	actual rate of flow (Q_A) , defined, 7.6 : 5
Brake horsepower. See Pump input power	adjustment, defined, 7.6 : 4
Bromobutyl, 12.1-12.6 : 68	design rate of flow (Q_D) , defined, 7.6 : 5
Bubble test, 4.1-4.6 : 27	rate of flow (Q), defined, 7.6 : 4, 7.8 : 3
Buffer fluid, 1.3 : 63, 12.1-12.6 : 79	Carboxylated nitrile, 12.1-12.6 : 68
defined, 12.1-12.6 : 38 Building services (HVAC), 9.6.1 : 12	Casing hydrostatic test pressure, 5.1-5.6 : 22
Bull ring packing, 6.1-6.5 : 77f., 77	suction and discharge flange ratings, 5.1-5.6 : 22
Butyl, 12.1-12.6 : 68	vent and drain boss sizing, 5.1-5.6 : 22
Bypass valves, 9.6.9 : 8	Casing position, 1.1-1.2 : 44, 44 f.
Calculations, 7.6 : 13	Casings, 1.3 : 1, 7, 2.3 : 65, 73
of NPSHA on dry-pit pump, 11.6 : 52	multistage arrangements, 1.3 : 8
of NPSHA on wet-pit pump, 11.6 : 51	back-to-back arrangement, 1.3 : 11, 11f.
of performance based on change in pump impeller	circular (concentric), 1.3 : 8, 8f.
diameter, 11.6 : 50	diffuser, 1.3 : 8, 8f.
of performance based on change in pump speed,	double volute, 1.3 : 7, 7f.
11.6 : 49	single volute, 1.3 : 7, 7f.
of performance tolerance bands for pump acceptance	stacked in-line arrangement, 1.3 : 10, 10f.
according to grade 1E and 2B, 11.6: 53	type BB3 between-bearings axial split volute, 1.3: 9, 9f
Calibration columns, 7.8 : 15	type BB4 between-bearings radial split single, 1.3 : 9,
Campbell diagram, 9.6.8 : 30, 33	9f.
defined, 9.6.8 : 58	type BB5 between-bearings radial split double
for lateral critical speeds, 9.6.8 : 31f.	(diffusers), 1.3 : 10
for torsional critical speeds, 9.6.8 : 34f.	type BB5 between-bearings radial split double (volute
for variable frequency unit, 9.6.8 : 85f.	pumps), 1.3 : 10, 10f.
Can vertical turbine pump intakes, 9.8 : 26	Catch tank leakage monitoring, 9.6.9: 10, 10t.
closed bottom can, 9.8: 28, 29f.	Cause, 9.6.9 : 27
design considerations, 9.8: 26	Cause, defined, 9.6.5 : 55
open bottom can intakes, 9.8: 26, 27f.	Cavitation, 3.1-3.5 : 49
Canals, 9.8 : 108	damage from, 9.6.1 : 10

Cavitation — Continued	28f.
in centrifugal pumps, 9.6.1 : 14	clean liquids, 5.1-5.6 : 36
Cavitation erosion resistance, 9.1-9.5: 26	dirty liquid, 5.1-5.6 : 27f.
elastomers, 9.1-9.5 : 27	dirty liquids, 5.1-5.6 : 36
engineered plastics, 9.1-9.5 : 27	external flush, 5.1-5.6 : 36
general ranking of common cast metals, 9.1-9.5 : 27 f.	high temperature, 5.1-5.6 : 36
general ranking of, 9.1-9.5 : 26	high viscosity, 5.1-5.6 : 36
hard-faced materials, 9.1-9.5 : 27	liquids that solidify, 5.1-5.6 : 36
Ceramic bearings, defined, 5.1-5.6 : 15	selection, 5.1-5.6 : 35
Ceramics, 4.1-4.6 : 10	volatile liquids, 5.1-5.6 : 36
coating application, 9.1-9.5 : 25	Circulator pump type icons, 1.1-1.2: 81
properties, 9.1-9.5 : 25	Circumferential piston pumps, 3.1-3.5 : 1f., 3t., 4t., 5f., 6f.,
Certificate of Approval, 40.7 : 12	11, 14f.
example, 40.7 : 12 f.	applications, 3.1-3.5 : 11
Certification reports, DOE, 40.6 : 21	description, 3.1-3.5: 11
Certification section, 1.4: 39, 2.4: 43	range chart, 3.1-3.5 : 11f.
purpose, 2.4 : 43	Classic instability, defined, 9.6.8 : 58
Certified curve, 6.6 : 18	Classification by configuration
CFD. See Computational fluid dynamics	discharge, above- and below-floor discharge, 2.1-2.2:
C-frame adapter, 1.1-1.2 : 46 f., 46	11
See also Overhung impeller, flexibly coupled, single	drivers, 2.1-2.2 : 11
stage, foot mounted ANSI B73.1 pump	Classification by impeller design, 2.1-2.2 : 16
Changes to scope of approval and additional pump test	Cleaning applications, 12.1-12.6 : 45
laboratories, 40.7 : 6	Clear liquid, intake structures for, 9.8 : 1
Character string fields, 50.7 : 12	can vertical turbine pump intakes, 9.8 : 26–29, 27f., 29f.
Characteristics of head measurement, 40.6 : 14	circular pump stations, 9.8 : 18–20, 19f.
Chart of correction factors for Cη, 9.6.7 : 10f.	formed suction intakes, 9.8 : 16–18, 17f.
for CQ and CH, 9.6.7 : 9f.	rectangular intakes, 9.8 : 10–16, 13f.–14f., 15t.–16t.
Check valves, 7.8 .11.2: 12 defined, 7.8 : 2	tanks, pump suction, 9.8 : 22–25, 24f., 25f.
Checklist to facilitate use of guideline, 9.6.8 : 5f.	trench-type intakes, 9.8 : 21–22, 21f.
Chemical packings, 8.1-8.5 : 20	unconfined intakes, 9.8 : 30–32, 31f.
Chemical process pumps, 9.6.1 : 9	Close coupled, defined, 4.1-4.6 : 7, 5.1-5.6 : 17
Chlorides (in water), 2.3 : 79	Close-coupled horizontal in-line, 1.1-1.2 : 39 f.
Chlorobutyl, 12.1-12.6 : 68	Close-coupled pumps, 1.1-1.2 : 1
Chromium-molybdenum iron, 12.1-12.6 : 67	Close-coupled sealless with canned motor, 1.1-1.2 : 38 f.
Chromium-nickel (NiHard) iron, 12.1-12.6 : 67	Close-coupled, vane-type, magnetic drive pumps, 4.1-4.6 :
CIMA. See Construction Industry Manufacturers	1,2f.
Association	Close-coupled, gear-type, magnetic drive pump, 4.1-4.6 :
Circular plan wet pit	5f.
accessories, 9.8 : 36	Closed bottom can, 9.8: 28, 29f.
cleaning procedure and low liquid level, 9.8 : 37	Closed conduit approach, 9.8 : 62, 65f.
floor clearance, 9.8 : 37–39	CMP. See Canned motor pump
minimized horizontal floor area and, 9.8 : 37f.–39f.	Coatings, 9.1-9.5 : 22
wet-pit design, 9.8: 36	Coercive force, defined, 4.1-4.6 : 7
Circular pump stations (clear liquids), 9.8 : 18	Color (in water), 2.3 : 79
designs of, 9.8 : 18, 19f.	Column hydraulic loss due to viscosity, 2.3 : 50
recommendations for dimensioning, 9.8 : 20	Column increasers and reducers losses due to viscosity,
Circulating/cooling water pumps, 9.6.1 : 10	2.3 : 50
Circulation piping plans for canned motor and magnetic	Columns, 2.3 : 65, 73
drive pumps, 5.1-5.6 : 26f.	Commissioning, 12.1-12.6 : 92
Circulation plans	Commissioning, start-up, operation, and shut-down
and conditions to avoid, 5.1-5.6 : 25	section, 1.4 : 27, 2.4 : 29
clean liquid, high temperature, nonvolatile, 5.1-5.6 :	across-the-line start, 2.4 : 33
29f.	adequate submergence, 2.4 : 30
clean liquid, nonvolatile, moderate temperature, 5.1 -	anti-reverse rotation devices, 2.4 : 29
5.6 : 26f.	back-flushing to remove debris, 2.4 : 30
clean liquid volatile moderate temperature 5.1-5.6:	bearing temperature 1 4:31 2 4:36

Co	mmissioning, start-up, operation, and shut-down	Comparison of equivalent nomenclature, 40.6 : 30 t.
	section — Continued	Compliance levels, 50.7 : 1, 11, 16, 17 t.
	closed valve warning, 2.4: 33	R compliance, 50.7 : 15, 17t.
	condition monitoring, 1.4: 30, 2.4: 35	R/D compliance, 50.7 : 15, 17 t.
	drive system settings, 1.4 : 29, 2.4 : 33	R/D/S compliance, 50.7 : 15, 17t.
	driver inspection, 1.4 : 29	R/D/S/A compliance, 50.7 : 16, 17t.
	guarding, 1.4 : 27, 2.4 : 30	relationship among, 50.7 : 16, 16f.
	hydraulic resonance in piping, 1.4 : 31, 2.4 : 36	Computational fluid dynamics (CFD)), 9.6.7 : 1
	hydraulic resonance, solutions, 1.4 : 31, 2.4 : 36	closed conduit approach, 9.8: 62, 65f.
	lube filtration, 2.4 : 33	Concentrated flows, expanding, 9.8: 62
	lubrication system settings, 1.4: 29, 2.4: 32	free surface approach, 9.8: 62, 63f65f.
	lubrication, 1.4 : 27, 2.4 : 29	in pump suction hydraulics, 9.8 : 55
	mechanical seals, 1.4 : 28, 2.4 : 31	simulation methods, 9.8 : 55
	minimum continuous flow, 1.4 : 29, 2.4 : 32	through dual flow screen, 9.8: 64f.
	minimum thermal flow, 1.4 : 29, 2.4 : 32	Computer discs and tape, cautions regarding, 4.1-4.6 : 23
	noise in pumping machinery, 1.4: 30, 2.4: 35	Computers, caution regarding, 4.1-4.6 : 23
	noise prevention, 1.4 : 31, 2.4 : 35	Concentration correction factor (C_{cv}), 12.1-12.6 : 53
	noise transmittal methods, 1.4 : 30, 2.4 : 35	defined, 12.1-12.6 : 42
	operation at reduced flow, 2.4 : 35	Concentration of solids by mass or weight (C_w) , defined,
		12.1-12.6 : 40
	packed stuffing box, 1.4: 28, 2.4: 31	
	parallel and series operation, 1.4 : 30, 2.4 : 34	Concentration of solids by volume (C_v), defined, 12.1-12.6 :
	performance testing and verification, 1.4 : 31, 2.4 : 36	40
	position of discharge valve on starting, 1.4 : 29	Condensate pumps, 9.6.1 : 10
	primary and secondary driver inspection, 1.4 : 29, 2.4 : 32	Condition monitoring (rotodynamic pumps) 9.6.5 : 1 baseline measurements, 9.6.5 : 3
	priming and filling, 1.4 : 27	bearing wear (plain bearings in sealless pumps), 9.6.5 :
	priming and liming, 1.4. 27 priming by ejector or exhauster, 1.4: 27, 2.4: 30	20
	priming by vacuum pumps, 1.4 : 28, 2.4 : 31	corrosion, 9.6.5 : 8
	pump bearings, 2.4 : 32	defined, 9.6.5 : 55
	pumps, 2.4 : 32	definitions, 9.6.5 : 2
	reduced flow/minimum flow discharge bypass, 1.4 : 30	design review, 9.6.5 : 22
	reduced voltage start, 2.4: 33	failure modes (with causes and indicators), 9.6.5 : 2,
	rotation, 1.4 : 27, 2.4 : 29	30t.
	shaft sealing settings and adjustments, 1.4: 28, 2.4: 31	frequency, 9.6.5 : 3
	start-up considerations, 1.4: 27, 2.4: 30	indicators (with causes and failure modes), 9.6.5: 2,
	start-up, operation, and shut-down, 1.4: 29, 2.4: 32	36t.
	system flushing, 1.4: 27, 2.4: 30	leakage, 9.6.5 : 10
	valve setting at start-up, 1.4 : 29, 2.4 : 34	maintenance inspection, 9.6.5 : 24
	valve settings and operation (timing), 1.4 : 29, 2.4 : 33	periodic lubricant analysis, 9.6.5 : 16
	vent line, 2.4 : 30	power, 9.6.5 : 4
	vibration (alarms and trip points), 1.4 : 30), 2.4 : 35	preinstallation hydrostatic test, 9.6.5 : 54
	water (hydraulic) hammer, 1.4 : 30, 2.4 : 34	pressure, 9.6.5 : 13
<u>_</u>	mmon polymer materials of construction for various	rate of flow, 9.6.5 : 19
CU		
	liquids	shaft position, 9.6.5 : 18
	adhesives and sealants, 9.1-9.5 : 26	speed (rpm), 9.6.5 : 20
	carbon and graphite, 9.1-9.5 : 26	temperature, 9.6.5 : 6
	ceramics, 9.1-9.5 : 25	vibration, 9.6.5 : 14
	elastomeric polymers, 9.1-9.5 : 24	Condition points, 2.1-2.2 : 34
	fabrics, 9.1-9.5 : 26	Condition points, definitions, 1.1-1.2 : 70, 12.1-12.6 : 35
	leather, 9.1-9.5 : 26	Condition, 9.6.5 : 55, 9.6.9 : 27
	other nonmetals, 9.1-9.5 : 25	Condition monitoring defined, 9.6.9 : 27
	reinforced fibers, 9.1-9.5 : 26	failure modes, 9.6.9 : 15t.
	rigid polymers and composites, 9.1-9.5 : 24	indicators, 9.6.9 : 23t.
	tensile strength and modulus of elasticity, 9.1-9.5 : 24	Confidentiality, 40.7 : 4
	thermoplastics, 9.1-9.5 : 25	Connecting piping, 12.1-12.6 : 91
	thermosetting polymers, 9.1-9.5 : 24	Considerations in the specification of dynamic analysis,
	types, 9.1-9.5 : 24	9.6.8: 16
	types, 3.1-3.3 . 24	3.0.0 . 10

Considerations in the specification of dynamic analysis —	capacity, actual rate of flow (Q_A) , defined, 7.1-7.5 : 11
Continued	capacity, adjustment, defined, 7.1-7.5 : 11
market influences and trends considerations, 9.6.8 :	capacity, design rate of flow (Q_D) , defined, 7.1-7.5 : 11
16	capacity, rate of flow (Q), defined, 7.1-7.5 : 11
pump and system configuration proven field	check valves, 7.1-7.5 : 10
experience, 9.6.8 : 16	choice of driver, 7.1-7.5 : 22
Consolidated range chart (metric units), 3.1-3.5: 5f.	construction characteristics, 7.1-7.5 : 1
Consolidated range chart (US customary units), 3.1-3.5:	control methods, 7.1-7.5 : 22
6f.	defined, 7.1-7.5 : 1
Consolidated range charts, 3.1-3.5: 2	definitions, 7.1-7.5 : 11
Constant-speed pumps, in trench-type wet wells, 9.8 : 76	diaphragm hydraulic system, 7.1-7.5: 10
Constant-speed systems, 9.6.9 : 14	diaphragms, 7.1-7.5 : 10
Construction drawings, 12.1-12.6 : 4, 5f.–20f.	diaphragms, double, with leak detection systems, 7.1-
Construction Industry Manufacturers Association (CIMA),	7.5 : 22
1.3 : 120	diaphragms, leak detection, 7.1-7.5: 10
Contact or continuity switches, 9.6.5 : 21	diaphragms, multiple, 7.1-7.5 : 10
Containment	discharge piping, 7.1-7.5 : 23
and leakage through containment shell, 5.1-5.6 : 21	double diaphragms, with leak detection systems, 7.1 -
and leakage through stator line, 5.1-5.6 : 21	7.5: 22
and oil-filled stator with pressure relief valve, 5.1-5.6 :	drive alignment after piping installation, 7.1-7.5 : 25
21	drive and control mechanisms, 7.1-7.5 : 5
design pressure ratings, 5.1-5.6 : 21	drive and control mechanisms, 7.1-7.5 : 5
for MDP with metallic pressure barriers, 5.1-5.6 : 21 induced eddy currents, 5.1-5.6 : 21	efficiency, mechanical, defined, 7.1-7.5 : 12 efficiency, volumetric, defined, 7.1-7.5 : 12
of liquid, 14.6 : 38	electromagnetic drive (solenoid), 7.1-7.5 : 6, 6f.
purpose, 5.1-5.6 : 21	environment, 7.1-7.5 : 22
secondary containment for CMP, 5.1-5.6 : 21	fittings, 7.1-7.5 : 25
secondary containment for MDP, 5.1-5.6 : 21	fixed stroke-length drives, 7.1-7.5 : 6, 7f.
secondary containment requirements for CMP, 5.1-5.6 :	flanges and fittings, 7.1-7.5 : 25
21	flexible coupling, 7.1-7.5 : 25
secondary containment requirements for MDP, 5.1-5.6 :	forces and moments, 7.1-7.5 : 24
21	foundation, 7.1-7.5 : 24
secondary leakage containment or control, 5.1-5.6: 21	gas vent valves, 7.1-7.5 : 22
substantiation of capabilities for nonmetallic shells,	gaskets, 7.1-7.5 : 25
5.1-5.6 : 21	general principles, 7.1-7.5 : 19
Containment shell, 4.1-4.6 : 14, 9.6.9 : 8	hydraulic coupled conical diaphragm, 7.1-7.5 : 5, 5f.
air in, 4.1-4.6 : 24	hydraulic coupled disc diaphragm, 7.1-7.5 : 4, 4f.
defined, 4.1-4.6 : 8, 5.1-5.6 : 18, 19	hydraulic coupled tubular diaphragm, 7.1-7.5 : 5, 5f.
draining, 4.1-4.6 : 25	hydraulic lost-motion drives, 7.1-7.5 : 8, 9f.
thickness and materials, 4.1-4.6 : 18	Impulse counters, 7.1-7.5 : 22
Continuous service, 2.3: 39	Industries, typical, 7.1-7.5 : 16
Contractors Pump Bureau (CPB), 1.3 : 120	injection check valve, 7.1-7.5 : 23
Contractual agreement(S), 40.7 : 2	inspection, 7.1-7.5 : 26
Control limits alarm limit, 9.6.5 : 4	installation, 7.1-7.5: 24
defined, 9.6.5 : 55	installation, operation and maintenance, 7.1-7.5 : 23,
shutdown limit, 9.6.5 : 4	26t.
Control limits, 9.6.9 : 5, 27 See also Alarm limits; Shut-down limits	linearity, defined, 7.1-7.5 : 12 liquid end assembly, 7.1-7.5 : 2, 10
Controlled-volume metering pumps, 7.1-7.5 : 1, 7.6 : 1	liquid end, 7.1-7.5 : 2, 10
"Y" strainer, 7.1-7.5 : 23	location of pump, 7.1-7.5 : 24
accuracy and performance, defined, 7.1-7.5 : 11	lubrication, 7.1-7.5 : 25
accuracy, steady state, defined, 7.1-7.5 : 11	maintenance. See Installation, operation and
application data requirements, 7.1-7.5 : 21	maintenance, 7.1-7.5 : 23
automatically controlled, defined, 7.1-7.5 : 8	manually controlled, defined, 7.1-7.5 : 10
backpressure valve, 7.1-7.5 : 23	materials of construction, 7.1-7.5 : 22
basic elements of, 7.1-7.5 : 1, 1f.	mechanical coupled disc diaphragm, 7.1-7.5 : 3, 3f.
calibration column, 7.1-7.5 : 23	mechanical lost-motion drives, 7.1-7.5 : 8, 8f.

Controlled-volume metering pumps — Continued multiple diaphragm, 7.1-7.5 : 10 multiplex pump, 7.1-7.5 : 10 net positive inlet pressure available (nPIPA), defined,	stroke speed, maximum allowable, defined, 7.1-7.5 : 16 stroke speed, minimum allowable, defined, 7.1-7.5 : 16 strokelength (L_m), defined, 7.1-7.5 : 15 strokespeed (n), defined, 7.1-7.5 : 15
7.1-7.5 : 12	subscripts, 7.1-7.5 : 18t.
net positive suction head available (nPSHA), defined, 7.1-7.5: 12	suction lift, static, defined, 7.1-7.5 : 16 suction lift, total, defined, 7.1-7.5 : 16
nomenclature, 7.1-7.5 : 8	suction piping, 7.1-7.5 : 22
optional pump features, 7.1-7.5 : 22	suction, flooded, defined, 7.1-7.5 : 16
pipe dope, 7.1-7.5 : 25	symbols troubleshooting, 7.1-7.5 : 26, 26t.
pipe tape, 7.1-7.5 : 25	symbols, 7.1-7.5 : 17t.
piping, 7.1-7.5 : 24	system components, 7.1-7.5 : 22
piston, 7.1-7.5 : 3	temperature sensors, 7.1-7.5 : 22
plunger, 7.1-7.5 : 2, 2f.	temperature, maximum rated (t_{max}) , defined, 7.1-7.5 :
power, pump input, defined, 7.1-7.5 : 14	16
power, pump output (hydraulic horsepower), defined, 7.1-7.5: 14	temperature, minimum rated (t_{min}), defined, 7.1-7.5 : 16 terminology definitions, 7.1-7.5 : 11
pressure, acceleration (p_{acc}) , defined, 7.1-7.5 : 14	terminology, nomenclature, 7.1-7.5 : 8
pressure, differential, defined, 7.1-7.5 : 14	terminology, see also subscripts;
pressure, discharge (p_d), defined, 7.1-7.5 : 15	turndown ratio, defined, 7.1-7.5 : 16
pressure, discharge, rated, defined, 7.1-7.5 : 15	typical uses and industries, 7.1-7.5 : 16
pressure, friction loss (p_i), defined, 7.1-7.5 : 15	uses, typical, 7.1-7.5 : 16
pressure, gauge and snubbers, 7.1-7.5 : 23	variable stroke-length drive mechanisms (non-lost-
pressure, sensors, 7.1-7.5 : 22	motion), 7.1-7.5 : 8, 9f.
pressure, suction (p_s) , defined, 7.1-7.5 : 15	Conversion factors, 11.6 : 67 t. , 14.6 : 84, 84 t.
pressure, suction, maximum allowable $(p_{s max})$,	Conversion of kinematic viscosity units, 9.6.7: 31
defined, 7.1-7.5 : 15	centipoise (cP) to centistokes (cSt), 9.6.7: 31
pressure, suction, minimum allowable (MASP),	centistokes (cSt) to Seconds Saybolt Universal (SSU),
defined, 7.1-7.5 : 15	9.6.7 : 31
pressure, total system discharge, defined, 7.1-7.5 : 15	conversion from CGS units to SI units, 9.6.7: 32
priming, 7.1-7.5 : 25	conversion from SI units to CGS units, 9.6.7: 32
pulsation dampener, 7.1-7.5 : 23	dynamic (absolute) viscosity to kinematic viscosity,
pump displacement (D), defined, 7.1-7.5: 11	9.6.7 : 31
pump liquid end assembly, 7.1-7.5: 2, 10	pascal-seconds (Pa•s) to square meters per second
pumping action and reciprocating piston, 7.1-7.5: 19	(m2/s), 9.6.7 : 32
pumping action, 7.1-7.5 : 1	Seconds Saybolt Universal (SSU) to centistokes (cSt),
rate of flow and discharge pressure, 7.1-7.5 : 19, 19f.	9.6.7 : 31
rate of flow and stroke length, 7.1-7.5: 20, 20f.	Cooling liquid flow path, defined, 4.1-4.6 : 8
rate of flow and turndown, 7.1-7.5 : 21	Cooling liquid flow, 4.1-4.6 : 14
rate of flow, 7.1-7.5 : 1	Cooling, defined, 5.1-5.6 : 15
rate of flow, average flow profile, 7.1-7.5 : 20, 20f.	Cooling-loop blockage, 9.6.9 : 7
rate of flow, formula, 7.1-7.5 : 19	Copper and copper alloys aluminum bronze, 9.1-9.5 : 20
rate of flow, theoretical and actual curves, 7.1-7.5 : 20,	copper-nickel alloys, 9.1-9.5 : 20
20f.	high copper, 9.1-9.5 : 19
reciprocating air drive, 7.1-7.5 : 6, 7f.	leaded nickel bronze (nickel silvers), 9.1-9.5 : 20
remotely mounted liquid end, 7.1-7.5 : 10	leaded red brass, 9.1-9.5 : 19
repeatability, defined, 7.1-7.5 : 15	silicon bronze, 9.1-9.5 : 19
safety, 7.1-7.5 : 23	tin bronze, 9.1-9.5 : 19
safety, relief valve, 7.1-7.5 : 23, 25	yellow brass, 9.1-9.5 : 19
selection, 7.1-7.5 : 21	Corporation stops, 7.8 : 14, 15f
simplex pump, 7.1-7.5 : 10	Correction factor equations for efficiency, 9.6.7 : 9
sizing and selection, 7.1-7.5 : 21	for flow, 9.6.7 : 8
slip (S), defined, 7.1-7.5 : 15	for head, 9.6.7 : 8
storage, 7.1-7.5 : 24 stroke counters, 7.1-7.5 : 22	for parameter B based on the water performance best efficiency flow, 9.6.7 : 8
stroke counters, 7.1-7.5. 22 stroke frequency adjustment, 7.1-7.5: 21	for viscous pump shaft input power, 9.6.7 : 9
stroke length adjustment, 7.1-7.5 : 21	Correction factors
on one longer adjustment, III III. 21	23.1301.011 1401010

Correction factors — Continued	shaft hub attachment methods, 3.1-3.5 : 59
defined empirically from a data bank, 9.6.7: 3	speed limitations, 1.3 : 59
defined from a physical model, 9.6.7: 3	CPB. See Contractors Pump Bureau
equations used to develop, 9.6.7 : 8	Cracking pressure, defined, 3.1-3.5: 17
example, single-stage pump (metric units), 9.6.7 : 10	Credit cards/magnet tape, caution regarding, 4.1-4.6 : 23
example, single-stage pump (US customary units),	Critical carrying velocity, 6.1-6.5 : 34
9.6.7 : 13	Critical damping ratio, defined, 9.6.8 : 58
methods of determination, 9.6.7 : 3	Critical damping, defined, 9.6.8: 58
Corrective action, 40.7 : 8	Critical speed, defined, 9.6.8: 58
Corrosion allowance for metallic rotodynamic pumps, 1.3 :	Cross-coupling, defined, 9.6.8 : 58
11	Cross-flow, controlling, 9.8: 58, 61f.
Corrosion monitoring, 9.6.5 : 8	Cross-sectional drawings section, 1.4: 38
alarm limits, 9.6.5 : 9	Cup type pistons composition cups, 6.1-6.5 : 78, 79f.
by electrical resistance (ER), 9.6.5 : 9	installation, 6.1-6.5 : 79
by linear polarization resistance (LPR), 9.6.5 : 9	synthetic rubber cups, 6.1-6.5 : 79, 79f.
by ultrasonic thickness measurement (UTM), 9.6.5: 9	Curie temperature, defined, 4.1-4.6 : 8, 5.1-5.6 : 17
by visual/dimensional inspection, 9.6.5 : 8	Curtain walls, 9.8: 65
frequency, 9.6.5 : 9	Curve shape, 20.3 : 2
means of, 9.6.5 : 8	Cutwater area, 1.3: 1
Corrosion potential, 7.8 : 8	Cyclic service, 2.3: 39
Corrosion, 2.3 : 78	D slide valves, 8.1-8.5 : 6, 6f.
and aeration, 2.3 : 79	D. See Displacement
and materials for rotodynamic vertical pumps, 2.3: 80	D. See also Pump displacement
and protective coatings, 2.3: 80	D_2 . See Impeller diameter (D_2)
and rust coating, 2.3: 78	Discharge recirculation, 1.3 : 72
and water quality analysis, 2.3 : 79	DA system current measurement module (output)
defined, 2.3: 78, 12.1-12.6: 43	calibration data, 14.6 : 77 t., 40.6 : 36 t.
failure mode indicated by temperature monitoring,	lab calibration devices, published accuracy, 14.6: 75 t
9.6.9 : 7	, 40.6 : 34 t.
galvanic, 2.3 : 78	lab DC current source calibration data, 14.6: 76 t.,
intergranular, 2.3 : 78	40.6 : 35 t.
mechanism of, 2.3: 78	lab precision DC current measurement device
pitting, 2.3 : 79	calibration data, 14.6 : 76 t., 40.6 : 35 t.
uniform, 2.3 : 78	lab pressure calibrator calibration data, 14.6 : 75 t.,
Corrosion/erosion/contamination, 9.1-9.5 : 11	40.6 : 34 t.
Corrosive environments, 7.8 : 8	pressure transducer calibration, 14.6 : 77 t., 40.6 :
Cost and lead time considerations, 9.6.8 : 26	36 t.
Coupling selection, 4.1-4.6 : 15	Damped natural frequency analysis of OH or BB pumps,
Couplings, 1.3 : 57, 58t. , 2.3 : 29, 3.1-3.5 : 58	9.6.8 : 47
alignment, 1.3 : 59	analysis, 9.6.8 : 48
common flexible types, 3.1-3.5 : 58	interpretation of results, 9.6.8 : 48
condition monitoring failure modes, 9.6.9 : 19t.	methodology, 9.6.8: 47
disk, 1.3 : 59	model, 9.6.8 : 47
driveshaft, 1.3: 57	validation, 9.6.8 : 49
elastomeric, 1.3 : 59	Damped torsional analysis, defined, 9.6.8 : 59
failure indicated by power monitoring, 9.6.9 : 5	Dampening devices, 7.6 : 9
failure indicated by vibration monitoring, 9.6.9 : 12	Damping, 9.6.8 : 27
flanged adjustable spacer, rigid style, 2.3 : 30 f.	defined, 9.6.8 : 59
flanged adjustable, rigid style, 2.3 : 30 f.	Data element groups, 50.7 : 12
flexible, 3.1-3.5 : 58	Data elements, 50.7 : 11
gear, 1.3 : 59	additional data to support API 610/ISO 13709 data
guards, 3.1-3.5 : 59	sheet, 50.7 : 14
in sump pump configuration, 2.3 : 62, 63 f., 65, 71	and bid, quotation, and purchasing, 50.7 : 10
limited end float, 1.3: 58	and equipment types, 50.7 : 10, 11t.
magnetic, 9.6.9 : 5, 7, 8	and field names, 50.7 : 11, 12
maintenance inspection for failure, 9.6.5 : 24, 25 offset, 1.3 : 57	and HI data exchange compliance levels, 50.7 : 1, 11, 15, 17t.
01130t, 1:3. 01	10, 176

Data elements — Continued	magnetic couplings (MDP), 5.1-5.6: 24
and pump technology designations, 50.7: 11, 18, 19t.	manufacturer responsibility for engineering
and R/D/S field designations, 50.7 : 11, 12, 13, 17 t.	coordination, 5.1-5.6 : 20
and units of measure, 50.7 : 12	materials, 5.1-5.6 : 24
and work processes, 50.7 : 10, 11t.	mean time between repair, 5.1-5.6: 20
classes, 50.7 : 12	mounting of pumps, 5.1-5.6 : 31
See also Pump data transaction set	venting and draining, 5.1-5.6 : 22
Data exchange. See Electronic data exchange	Design and application
Data field definitions, 50.7 : 13	alternative designs, 5.1-5.6 : 19
Data sheets standardization of, 50.7 : 1	basic design, 5.1-5.6 : 20
usefulness and examples of, 50.7: 8	minimum requirements for pumps, 5.1-5.6 : 19
Data sheets, 3.1-3.5 : 50, 7.6 : 11	shaft seals, 5.1-5.6 : 20
example, 3.1-3.5 : 51f.	special considerations for sealless pumps, 5.1-5.6 : 20
Datum	Design and application considerations, 3.1-3.5 : 33
defined, 12.1-12.6 : 33, 3.1-3.5 : 19, 3.6 : 4, 6.6 : 5	drive specifications, 3.1-3.5 : 42
elevations for various slurry pump designs, 12.1-12.6:	duty cycle, 3.1-3.5 : 44
34f.	effect of vapor pressure on pump performance, 3.1-
elevation for various pump designs at eye of first-stage	3.5 : 42
impeller, 1.1-1.2 : 69 f.	efficiency and energy conservation, 3.1-3.5: 42
elevation for various pump designs, 14.6 : 8 f.	fluid type, 3.1-3.5 : 34
Datum elevation, 2.1-2.2: 33 f.	liquid identification and properties, 3.1-3.5 : 34
Debris, 9.8 : 107–108	noise levels, 3.1-3.5 : 48
control and removal, 9.8 : 109	other fluid properties, 3.1-3.5 : 42
Decision matrix, 9.6.8 : 12t.	other user requirements, 3.1-3.5 : 44
Decontamination of returned products procedure, 9.1-9.5 :	rotary multiphase pumps in oil and gas application,
42	3.1-3.5 : 50
Decouple, defined, 5.1-5.6 : 17	slurry applications, 3.1-3.5 : 44
Decoupling torque test, 4.1-4.6 : 29	specific gravity (s), 3.1-3.5: 41
Decoupling, defined, 4.1-4.6 : 8	temperature, 3.1-3.5 : 33
Deep-well pumps (VS1), 2.1-2.2 : 4 f.	vapor pressure, 3.1-3.5 : 41
Default test acceptance grades, 14.6: 18	viscosity, 3.1-3.5 : 37
based on purchaser's intended service, 14.6 : 18, 18 t.	Design guidelines, 8.1-8.5: 13
Definitions of terms, 9.6.8 : 58	Design Institute for Physical Properties (DIPPR), 50.7 : 3
Definitions, 2.1-2.2 : 28, 3.1-3.5 : 15, 6.1-6.5 : 24–35, 8.1-	Design of rectangular wet wells, 9.8: 87
8.5 : 7, 12.1-12.6 : 31–44	cleaning procedures, 9.8: 88
Demagnetization, defined, 4.1-4.6 : 8, 5.1-5.6 : 17	design alternatives, 9.8: 88
Dephase, defined, 4.1-4.6: 8	design capacity, 9.8 : 87
Deposit velocity (Vstp), 12.1-12.6: 48	high-level entry intake structure, 9.8: 88, 89f., 90f.
defined, 12.1-12.6: 41	low-level entry intake structure, 9.8 : 88, 91f.
Design, 4.1-4.6 : 13	sump dimensions, 9.8 : 88, 92f.
auxiliary piping, 5.1-5.6 : 32	Design review, 9.6.5: 22
casing, 5.1-5.6 : 22	frequency, 9.6.5 : 24
circulation plans, 5.1-5.6 : 25	hydraulic applications, 9.6.5 : 22
containment, 5.1-5.6 : 21	installation, 9.6.5 : 23
data to be supplied by purchaser, 5.1-5.6 : 20	mechanical applications, 9.6.5 : 22
dynamic balance, 5.1-5.6 : 24	operating procedures, 9.6.5 : 24
electrical component and installation requirements,	Desired data, 50.7 : 13, 14
5.1-5.6 : 20	See also R/D/S field designations
external bearings (MDP), 5.1-5.6 : 23	Determination of pump head, 14.6 : 36 f.
external couplings and guards (MDP), 5.1-5.6 : 31	Determination, application, and calculation of instrument
for pumps that handle liquids other than water, 5.1-5.6 :	(systematic) uncertainty, 14.6 : 72, 40.6 : 31
20	distribution of probability, 14.6: 73, 40.6: 32
gaskets and joint bolting, 5.1-5.6: 21	example calculations, 14.6: 74, 40.6: 33
general, 5.1-5.6 : 20	example with discharge pressure transducer, 14.6: 74
instrumentation options, 5.1-5.6 : 32	75, 40.6 : 33, 34
integral motors (CMP), 5.1-5.6 : 23	example with venturi flowmeter, 14.6 : 74, 80, 40.6 :
internal bearings, 5.1-5.6 : 22	33, 39

Determination, application, and calculation of instrument	Double suction pumps, 20.3 : 5 t.
(systematic) uncertainty — Continued	Double-acting pump, 6.1-6.5 : 1f., 2f., 3
types A and B evaluations, 14.6 : 72, 40.6 : 31	Double-walled piping systems, 7.8 : 8
Determining overall pump efficiency, 40.6 : 10	Drains, 8.1-8.5 : 27
Determining pump efficiency considerations, 40.6 : 9	Drilling applications, 12.1-12.6 : 45
other pump types, 40.6 : 9	Drive (steam) cylinder, 8.1-8.5 : 6
submersible pumps, 40.6 : 9	Drive (steam) end, 8.1-8.5 : 4, 5f.
type VS0, 40.6 : 9	lubrication, 8.1-8.5 : 18, 27
types VS1 and VS3, 40.6 : 9	Drive (steam) piston, 8.1-8.5: 6
vertically suspended pumps, 40.6: 9	Drive characteristics, 4.1-4.6 : 21
Deviation from normally attainable efficiency (metric units),	Drive section, defined, 5.1-5.6 : 14
20.3 : 10 f.	Drive train arrangements, 12.1-12.6 : 85
Deviation from normally attainable efficiency (US	Driven component liner, defined, 5.1-5.6 : 18
customary units), 20.3: 11 f.	Driver power. See Total input power
Diaphragms	Drivers, 1.3 : 153, 7.6 : 8
double, with leak detection systems, 7.8 : 7	deceleration devices (flywheels, etc.), 1.3: 176, 2.3:
leak detection, 7.8 : 7	94
Differential pressure (Δp)	eddy current drives, 1.3: 176
calculation, 3.6 : 13	functions and parameters for selection, 1.3 : 154t.
defined, 3.1-3.5 : 21, 3.6 : 6	gears, 2.3 : 94
Differential pressure, 8.1-8.5 : 11, 9.6.9 : 12	in VS4 line-shaft design sump pumps, 2.3 : 65
Dilatant fluid, defined, 3.1-3.5 : 39, 39f.	in VS5 cantilever shaft design sump pumps, 2.3 : 73
Dimensionally interchangeable pump, 2.1-2.2 : 19	pedestal, 2.3 : 65, 74
Direct-acting (steam) pumps all bronze, 9.1-9.5 : 14	See also Electric motors; Engines; Steam turbines
all iron, 9.1-9.5 : 14	selection, 2.3: 81, 81 t.
bronze fitted, 9.1-9.5 : 14	sizing, 2.3 : 81
Direct-acting (steam) pumps defined, 8.1-8.5 : 1	types, 2.3 : 81
double-acting pump, 8.1-8.5: 1	variable-speed drives and gears, 1.3: 176, 2.3: 94
duplex pump, 8.1-8.5 : 2, 3f.	Dry critical speed analysis, defined, 9.6.8 : 59
horizontal pump, 8.1-8.5 : 1	Dry pit (nonclog) pumps, 1.3 : 117, 118f.
inspection, 8.1-8.5 : 26	Dry run, 9.6.9 : 8
nomenclature, 8.1-8.5 : 2	Dual pressurized seal arrangements, 9.6.9 : 10, 10t.
piston pump, 8.1-8.5 : 1, 2f.	Dual pressurized seals, 12.1-12.6 : 79–80, 80f.
simplex pump, 8.1-8.5 : 1, 3f.	defined, 12.1-12.6 : 38
types, 8.1-8.5 : 1, 1f.	Dual seals, defined, 12.1-12.6 : 37
typical services, 8.1-8.5 : 13	Dual unpressurized seal arrangements, 9.6.9 : 10, 10t.
vertical pump, 8.1-8.5 : 1	Dual unpressurized seals, defined, 12.1-12.6 : 38
Direction of rotation, defined, 3.1-3.5 : 18	Ductile iron, 12.1-12.6 : 67
Discharge pipe or hose, 2.3 : 65, 73, 7.6 : 9	Dunkerly equation, 9.6.8: 40
Discharge piping, 6.1-6.5 : 49f., 56	Duplex pump, 6.1-6.5 : 3
Discharge port, defined, 3.1-3.5 : 16	Duplex stainless steels, 12.1-12.6 : 67
Discharge pressure (<i>p_d</i>), 8.1-8.5 : 10, 9.6.9 : 11	Duplicate performance pump, 2.1-2.2 : 19
See Outlet pressure	Duplicate, defined, 9.6.8 : 59
Discharge pressure (p_d), defined, 7.8 : 3	Duty point. See Guarantee point
Discharge pressure gauge, 7.6 : 9	Dynamic analysis
Discharge pressure transducer example calculation of	Dynamic analysis sample specification wording, 9.6.8 : 86
percent uncertainty for the discharge pressure, full	Dynamic analysis sample specifications, 9.6.8 : 84
system of 300 psi pressure transducer and data	instructions for specification writers, 9.6.8 : 84
acquisition system, 14.6 : 79 t., 40.6 : 38 t.	reduction of vibration and reliability problems, 9.6.8 : 27
Disclaimer, 5.1-5.6 : 1	separation margin, 9.6.8 : 84
Disk friction losses, 9.6.7 : 19	Dynamic analysis sample specifications, motor reed
Displacement (D), 6.1-6.5: 24, 8.1-8.5: 9	critical frequency, 9.6.8 : 90
defined, 3.1-3.5 : 18, 3.6 : 2	instructions to motor purchasers, 9.6.8 : 90
Distribution of probability Type B forms, 40.6 : 32	instructions to specification writers, 9.6.8 : 90
DOE compared to HI 40.6 nomenclature, 40.6 : 30, 30 t.	sample specification, 9.6.8 : 90
Double diaphragms, with leak detection systems, 7.8 : 7	Dynamic balancing. See two-plane balancing
Double suction impellers, 2.3 : 6 f., 6	Economic consequences, 9.6.9 : 4, 4t.

Eddy current defined, 4.1-4.6 : 8, 5.1-5.6 : 14	enclosures, 1.3 : 156, 157t., 2.3 : 84, 85 t.
drive, defined, 4.1-4.6 : 8	explosion-proof machines, 1.3 : 164
losses, defined, 4.1-4.6 : 8	explosion-proof motor requirements, 1.3 : 165
magnetic coupling, 4.1-4.6 : 13	explosion-proof, 2.3 : 92, 93
Eddy current drive, defined, 5.1-5.6 : 17	frequency, 1.3 : 163
Effective particle diameter, 6.1-6.5 : 34	Group A-D hazardous materials, 2.3: 93
Effects of liquid viscosity on pump performance, 9.6.7 : 1	horizontal mounting, 1.3 : 159
differences between 2010 and 2015 versions, 9.6.7:	industry standards, 1.3 : 168
1	IP designation system (degree of protection), 1.3 : 157,
summary, 9.6.7 : 1	158t.
Efficiency (h), defined, 11.6 : 11	motor bearings, 1.3 : 159
Efficiency and energy conservation, 3.1-3.5 : 42	NEMA Designs A-D, 1.3 : 161, 161f., 2.3 : 89
Efficiency gain by polishing hydraulic surface example	open circuit cooling, 2.3: 87
(metric units), 20.3 : 4	performance characteristics, 1.3 : 160, 2.3 : 87
Efficiency prediction method, 1.3 : 81	power factor, 1.3 : 162, 2.3 : 90
Efficiency ratio (η_r) , defined, 12.1-12.6 : 41	relationship between voltage and current, 1.3: 160
Efficiency reduction due to specific speed (metric units),	service factor, 1.3 : 163, 2.3 : 90
20.3 : 7 f.	squirrel-cage induction, 2.3 : 83
Efficiency reduction due to specific speed (US customary	starting torque, 1.3 : 160
units), 20.3 : 9 f.	starting voltage and frequency, 2.3: 91
Efficiency reduction factor (R_{η}) , 12.1-12.6 : 53	starting, 1.3 : 163
defined, 12.1-12.6 : 41	starts, number of, 2.3 : 92
Efficiency, 6.1-6.5 : 29	synchronous, 2.3: 84
Elastomers, 12.1-12.6 : 66, 67–68	torque vs. speed, 1.3 : 160, 2.3 : 87, 88 f.
bonded to metals, 12.1-12.6 : 66	torque-speed curves, 1.3 : 160f.
linings, storage of, 12.1-12.6 : 92	types, 1.3 : 155, 2.3 : 83
synthetic rubber, 12.1-12.6 : 68	variable-speed power sources, 1.3 : 166
Electric motor input power (P_{mot}) $[P_1]$, defined, 1.1-1.2 :	vertical mounting, 1.3 : 159
72, 2.1-2.2 : 36, 12.1-12.6 : 36	voltage-current relationship, 2.3: 87
Electric motors, 1.3 : 153, 2.3 : 83	wound rotor induction, 2.3 : 84
alternating-current (AC) polyphase, 1.3: 156, 2.3: 83	Electric power input to motor, 40.6 : 25
alternating-current (AC) single-phase, 1.3 : 155, 2.3 :	Electric power measurements, 40.6 : 25
83	Electric power plant (non-nuclear) pumps, 9.6.1 : 9–10,
and altitude, 1.3 : 163, 2.3 : 91	10t.
and frequency, 2.3: 91	Electrical current, for power monitoring, 9.6.5 : 5, 9.6.9 : 6
and hazardous locations and materials, 2.3: 92	Electrical resistance (ER), 9.6.5 : 9
and shaft-mounted fans, 2.3: 87	Electronic counters (in rotary speed measurement), 3.6 :
bearings, 2.3 : 87	25
Class I-III hazardous locations, 2.3: 92	Electronic counters, 9.6.9 : 14
classified (or regulated) areas (hazardous	Electronic counters, in speed (rpm) monitoring, 9.6.5 : 20
atmospheres), 1.3 : 164	Electronic data dictionary, 50.7 : 1, 8
closed-circuit cooling, 2.3: 87	Electronic data exchange (EDE), 50.7 : 1
construction, 2.3 : 84	additional resources, 50.7 : 30
cooling fluids, 2.3: 87	and bounded set of data elements (dictionary), 50.7 : 8
cooling in VSO-style pumps, 2.3 : 87	and business leaders/managers, 50.7 : 3
cooling methods, 1.3 : 158, 2.3 : 86	and information technology staff and system
definition of first numeral in IP classification system,	implementation specialists, 50.7 : 4
2.3 : 86 t.	and neutral data exchange files, 50.7 : 8
definition of second numeral in IP classification	and pump specifiers and manufacturers, 50.7 : 4
system, 2.3 : 86 t.	and universal digital format (XML), 50.7 : 8
degree of protection, 2.3 : 85, 86 t.	compliance levels for data elements, 50.7 : 1
direct current (DC), 1.3 : 156	defined, 50.7 : 1
Division 1-2 hazardous locations, 2.3 : 93	demonstration of real usage scenarios, 50.7 : 22, 22 f.
dust-ignition proof, 2.3 : 92, 93	in bidding and quoting transactions, 50.7 : 1
dust-ignition-proof machines, 1.3 : 164	link to HI-EDE data dictionary, 50.7 : 31
dust-ignition-proof motor requirements, 1.3 : 166	standards utilizing XML schemas, 50.7 : 1
efficiency, 1.3 : 161, 2.3 : 90	testing compliance with HI, 50.7: 21

```
Electronic data exchange (EDE) — Continued
                                                             Estimated efficiency increase due to improved surface
   units of measure and conversion for transactions,
                                                                   finish (metric units), 20.3: 12 f.
                                                             Estimated efficiency increase due to improved surface
Electronic instruments, caution regarding, 4.1-4.6: 23
                                                                   finish (US customary units), 20.3: 13 f.
Elevation head (Z) [Hstat], defined, 1.1-1.2: 69, 2.1-2.2:
                                                             Ex rating, 1.4: 8, 2.4: 8
                                                             Excessive radial thrust, 1.3: 72
      32, 3.6: 4, 6.6: 5, 11.6: 9, 12.1-12.6: 33
                                                             Excitation force level. 9.6.8: 27
Elevation head. 6.1-6.5: 28. 8.1-8.5: 11
Elevation pressure (p_z), 6.1-6.5: 28, 8.1-8.5: 11
                                                             Exclusions from standard, 9.6.4: 2
    defined, 3.1-3.5: 19, 3.6: 4, 6.6: 5
                                                             Expected pump efficiency due to increasing wearing ring
    equation, 3.6: 4
                                                                   gap example (US customary units), 20.3: 4
Encapsulation, defined, 4.1-4.6: 8
                                                             Explosive atmosphere, caution regarding, 4.1-4.6: 23
Enclosed impellers, 2.3: 5, 6 f.
                                                             External bearings (MDP)
   and axial thrust, 2.3: 9 f., 9
                                                                 lubrication, 5.1-5.6: 23
Enclosed line-shaft pumps, 2.3: 16, 17 f., 18 f.
                                                             External flush fluid, defined, 12.1-12.6: 38
                                                             External gear pumps (flanged ports), 3.1-3.5: 26f.
   bearing bushings, 2.3: 16
   bearing lubrication, 2.3: 20
                                                             External gear pumps (threaded ports), 3.1-3.5: 26f.
   bearing spacing, 2.3: 19
                                                             External gear pumps on baseplate, 3.1-3.5: 27f.
                                                             External gear pumps, 3.1-3.5: 5f., 6f., 14f.
End plate, defined, 3.1-3.5: 16
End suction pumps – large, 20.3: 5 t.
                                                                 applications, 3.1-3.5: 9
End suction pumps - small, 20.3: 5 t.
                                                                 description, 3.1-3.5: 9
Energy grade line (EGL), 9.8: 80
                                                                 range chart, 3.1-3.5: 10f.
Engineered plastics applications, 9.1-9.5: 27
                                                             Factors that influence efficiency, 20.3: 1
Engines, 1.3: 168, 175f.
                                                                 factors not included, 20.3: 3
   condition monitoring, 1.3: 173
                                                                 impeller diameter trim, 20.3: 2
   cooling, 1.3: 170
                                                                 internal clearances, 20.3: 2
   diesel fuel grades, 1.3: 174
                                                                 mechanical losses, 20.3: 2
   diesel. 1.3: 169
                                                                 pumpage. 20.3: 2
   drive connections, 1.3: 169
                                                                 special impeller designs, 20.3: 2
   enclosures, 1.3: 170
                                                                 specific speed, 20.3: 1
   Engine Power Test Code, 1.3: 174
                                                                 staging effect. 20.3: 2
   gasoline, 1.3: 169
                                                                 surface roughness, 20.3: 1
   mass elastic analysis, 1.3: 175
                                                                 thrust balance, 20.3: 2
   mounting, 1.3: 169
                                                                 types of pumps, 20.3: 1
   operating speeds, 1.3: 172
                                                             Factory performance tests, 9.6.3: 2, 14.6: 10
   operation, 1.3: 172
                                                                 certified. 11.6: 5
   package design considerations, 1.3: 174
                                                                 characteristics to be monitored, 9.6.3: 2
   speed governing, 1.3: 172
                                                                 nonwitnessed and certified, 14.6: 10
   starting, 1.3: 173
                                                                 nonwitnessed, 11.6: 5, 14.6: 10
   testing and performance, 1.3: 174
                                                                 remote witnessing by purchaser's representative, 11.6:
   types, 1.3: 168
                                                                   6, 14.6: 10
Environmental consequences, 9.6.9: 4, 4t.
                                                                 See also Performance test reports Factory tests
Environmental considerations, 5.1-5.6: 35
                                                                 witnessed, 11.6: 5, 14.6: 10
Equipment data sheets, 12.1-12.6: 44
                                                                 witnessing by purchaser's representative, 11.6: 5,
   metric units, 12.1-12.6: 100–101
                                                                   14.6: 10
   US customary units, 12.1-12.6: 102–103
                                                             Failure modes
Equipment life cycle work process, 50.7: 4, 5 f.
                                                                 defined, 9.6.5: 55
ER. See Electrical resistance
                                                                 for sealless pumps and pumps with journal bearings,
Erosion, 2.3: 78
                                                                   9.6.5: 35t.
   cavitation. 2.3: 78
                                                                 with causes and indicators. 9.6.5: 2. 30t.
   defined, 2.3: 78, 12.1-12.6: 43
                                                             Failure modes characterization, 9.6.9: 1
   maintenance inspection for, 9.6.5: 24, 26
                                                                 condition monitoring, 9.6.9: 15t.
Erosion-Corrosion, 2.3: 78, 12.1-12.6: 57
                                                                 defined. 9.6.9: 27
                                                                 determining severity level, 9.6.9: 4, 4t., 5t.
Escritt modification, 9.8: 77, 78t., 79t.
Estimated efficiency decrease due to increased wear ring
                                                                 indicated by power monitoring, 9.6.9: 5
      clearance (metric units), 20.3: 14 f.
                                                                 indicated by temperature monitoring, 9.6.9: 7
Estimated efficiency decrease due to increased wear ring
                                                                 indicated by vibration monitoring, 9.6.9: 12
      clearance (US customary units), 20.3: 14 f.
                                                             Failure, 9.6.9: 27
```

Failure, defined, 9.6.5 : 55	Flow rate monitoring, 9.6.9 : 13
FEA, defined, 9.6.8 : 59	Flow regime at intake, 9.8 : 109
Ferrite, defined, 4.1-4.6 : 10	Flow separation in runout condition, 2.3: 41
FIATECH/AEX, 50.7 : 1, 3	Flow splitters, in wastewater wet wells, 9.8 : 84–85
informative content, 50.7: 4	Flowchart describing workflow, 9.6.8 : 3f.
intended audience, 50.7 : 3	Flowchart referencing applicable sections of guideline,
normative content, 50.7: 4	9.6.8 : 4f.
overview, 50.7 : 3	Flowchart to determine pump performance on a viscous
purpose, 50.7 : 1	liquid when performance on water is known, 9.6.7:
scope, 50.7 : 1	6f.
supported work processes and equipment types, 50.7 :	Flowchart to establish if the procedure is applicable, 9.6.7 :
11, 11t.	5f.
Field-test pressure, 1.1-1.2 : 73, 2.1-2.2 : 37	Flowchart to select a pump for given head, rate of flow,
Fillets, 9.8 : 85	and viscous conditions, 9.6.7 : 7f.
Filter, defined, 5.1-5.6 : 15	Flowmeters, 6.6 : 18, 7.8 : 16
Filtered high-frequency signal processing, 9.6.5 : 15,	Fluid types
9.6.9 : 12	and pump ratings and performance data, 3.1-3.5: 34
Filters/strainers, 7.8 : 16	chemical process, 9.1-9.5 : 5
Fine-particle correction factor (C_{fp}), 12.1-12.6 : 53	clear water, 9.1-9.5 : 5
defined, 12.1-12.6 : 42	NACE guidelines, 9.1-9.5 : 5
Finite element analysis method (FEA), 9.6.8 : 35	petroleum handling, 9.1-9.5 : 5
sources of errors, 9.6.8 : 35	Fluid whirl, defined, 9.6.8 : 59
Finite element analysis, defined, 9.6.8 : 59	Fluids, applicable standards, 9.1-9.5 : 5
First critical speed, defined, 9.6.8 : 38	Fluids, defined, 3.1-3.5 : 16
First dry critical speed of vertically suspended (VS) pumps,	
9.6.8 : 46	defined, 4.1-4.6 : 8
analysis, 9.6.8 : 46	density, defined, 4.1-4.6 : 9
interpretation of results, 9.6.8 : 47	Foot valves
methodology, 9.6.8 : 46	losses due to viscosity, 2.3 : 50
model, 9.6.8 : 46	Forced response analysis of vertical pump, driver
validation, 9.6.8 : 47	baseplate structural system, 9.6.8 : 57
First transverse (lateral) critical speed, 9.6.8 : 39	analysis, 9.6.8 : 57
for a rotor with a single attached mass, 9.6.8 : 39	interpretation of results, 9.6.8 : 57
for a shaft of constant cross section, 9.6.8 : 39	model, 9.6.8 : 57
for a shaft of negligible mass carrying several	validation, 9.6.8 : 57
concentrated masses, 9.6.8 : 40	Forced response analysis OH or BB pump, driver
for the angular or torsional case, 9.6.8 : 41	baseplate structural system, 9.6.8 : 56
Fittings, 8.1-8.5 : 16	analysis, 9.6.8 : 56
losses due to viscosity, 2.3 : 50	interpretation of results, 9.6.8 : 56
Flammable liquids or vapors, 8.1-8.5 : 16	model, 9.6.8 : 56
Flanges, 8.1-8.5 : 16, 12.1-12.6 : 85	validation, 9.6.8 : 57
Flexible coupling, defined, 9.6.8 : 59	Formed suction intake (FSI), 9.8 : 16, 67, 97
Flexible foundation, defined, 9.6.8 : 59	alternative designs, 9.8 : 18
Flexible member pumps, 3.1-3.5 : 1f., 8	application standards, 9.8 : 18
flexible vane, 3.1-3.5 : 8	recommended dimensions for, 9.8 : 17, 17f.
peristaltic, 3.1-3.5 : 8	shoe-box-type formed suction intake, 9.8 : 97, 99f.
Flexible rotor, defined, 9.6.8 : 59	stork-type formed suction intake, 9.8 : 97, 98f. Foundation bolts, 3.1-3.5 : 56f.
Flexible vane pumps, 3.1-3.5 : 3t., 4t., 5f., 6f., 14f.	
description, 3.1-3.5: 8	concrete mixture, 3.1-3.5 : 55
materials of construction, 3.1-3.5 : 8 Flexibly coupled horizontal in-line, 1.1-1.2 : 40 f.	defined, 3.1-3.5 : 55
	dimensions, 3.1-3.5 : 55
Flooded suction, 6.1-6.5 : 31, 8.1-8.5: 12	Foundation rigidity
Floor clearance <i>C</i> 9.8 : 20	horizontal pump structures, 9.6.8 : 14f.
Floor clearance C_f , 9.8 : 20	vertical pump structures using motor CG location, 9.6.8 : 14f.
Floor cones, 9.8 : 83, 83f. Flow of liquid, 9.8 : 9, 51	vertical pump structures using top motor bearing
Flow of liquid, 9.6 . 9, 51 Flow rate (Q), defined, 6.1-6.5 : 24, 11.6 : 7	location, 9.6.8 : 15f.
i ion iato (se), aoiniou, vii-vio. Zt, i liv. I	ioudion, J.J.J. 101.

Foundation, 2.3 : 26, 6.1-6.5 : 68	12.1-12.6 : 33
bolts, 68, 68f.	Gauge pressure (p_g), defined, 3.1-3.5 : 19, 3.6 : 4, 6.1-6.5 :
Frame assembly. See Power end	28, 6.6 : 5, 8.1-8.5 : 11
Frame mounted, defined, 12.1-12.6: 3	Gauge pressure in terms of head (h_g) , defined, 11.6 : 8
Frame selections	Gauges, 9.6.9 : 6, 11
open drip-proof, 2.1-2.2 : 84, 88 t.	Gauss, defined, 4.1-4.6 : 9
TEFC, 2.1-2.2 : 84	Gear pumps, 3.1-3.5 : 1f., 3t., 4t.
Francis vane impeller, 2.1-2.2 : 19	external gear, 3.1-3.5 : 3t., 4t., 9
Free surface approach, 9.8: 62, 63f65f.	internal gear, 3.1-3.5 : 3t., 4t., 10
Free surface vortices, 9.8 : 49, 51–52, 52f., 65–66, 66f.,	General industrial pumping applications, 9.6.1: 14
68f.	Gilbert, defined, 4.1-4.6: 9
Freight, caution regarding, 4.1-4.6 : 23	Gland follower. See Gland
Frequencies	Gland, defined, 3.1-3.5 : 17
filtering out those outside measurement range, 9.6.4 :	Globally Harmonized System of Classification and Labeling of Chemicals (GHS), 5.1-5.6 : 34
for electric motors, 2.3 : 91	GOR. See Gas oil ratio
natural frequency and resonance, 9.6.4 : 17	Grades of accuracy
natural, 2.3 : 26	Grades of accuracy, 14.6 : 11
ranges, 9.6.4 : 3	acceptance tolerances, 14.6 : 11
Frequency of monitoring, 9.6.5 : 3	and corresponding tolerance bands, 14.6 : 14, 14 t.
Frequency separation, defined, 9.6.8 : 59	default test acceptance grades, 14.6 : 18, 18 t.
Frequency-responsive devices (in rotary speed	grade 1 (1B, 1E, 1U), 14.6 : 14, 14 t.
measurement), 3.6 : 25	grade 2 (2B, 2U), 14.6 : 14, 14 t.
Fresh water lakes, 9.8 : 108	grade 3 (3B), 14.6 : 14, 14 t.
Friction characteristic, 6.1-6.5 : 34	permissible amplitude of fluctuations per grade, 11.6:
Friction characteristic, defined, 12.1-12.6: 40	35 t., 14.6 : 12, 12 t.
Friction head $(h_f \text{ or } h_i)$, defined, 1.1-1.2 : 70, 2.1-2.2 : 34,	pressure tappings for, 14.6 : 30, 30 f.
12.1-12.6 : 35 ["]	See also Test tolerances, reasons for
Friction head losses, 40.6 : 17	tolerance field for acceptance grade 1E, 14.6: 15, 17 f.
Friction loss pressure (<i>p_f</i>), 6.1-6.5 : 28, 7.8 : 3	tolerance field for acceptance grades 1B, 2B, and 3B,
Friction losses at inlet and outlet, 40.6: 18	14.6 : 15, 17 t.
Froth factors, 12.1-12.6 : 55	tolerance field for acceptance grades 1U and 2U, 14.6:
application to pump selection, 12.1-12.6: 55-57, 56f.	17 f.
defined, 12.1-12.6 : 54	Graphite bearings, defined, 5.1-5.6 : 15
for common processes, 12.1-12.6: 55, 55t.	Gray cast iron, 12.1-12.6 : 67
Froth pumping, 12.1-12.6 : 54–58	Guarantee point, 14.6 : 2, 10
Froth, defined, 12.1-12.6 : 54	and maximum permissible measurement device
Froude number, 9.8 : 46, 49, 65, 77, 81, 85	uncertainty, 11.6 : 36 t., 14.6 : 13, 13 t.
Full-flow relief pressure, defined, 3.1-3.5 : 17	documentation, 14.6 : 11
Fundamental considerations, 9.6.7 : 2	Guarantees, defined, 11.6: 6
viscous correction factors, 9.6.7 : 2	Guideline for dynamics of pumping machinery, 9.6.8 : 1
Galling resistance, 9.1-9.5: 11	introduction, 9.6.8: 1
Galling, defined, 9.1-9.5 : 11	scope, 9.6.8 : 1
Galvanic corrosion, 9.1-9.5 : 8	GVF. See Gas volume fraction
minimization of, 9.1-9.5 : 8	Gyroscopic effect, defined, 9.6.8 : 59
Galvanic series of metals and alloys, 9.1-9.5 : 9 f.	h _{acc} . See Acceleration head
Galvanic series, 9.1-9.5: 8	Handling equipment and tools, 3.1-3.5 : 54
Gap, defined, 4.1-4.6 : 9	Hard irons, 12.1-12.6 : 67, 95
Gas charged pulsation dampeners, 7.8 : 13	Head (h) [H], defined, 1.1-1.2 : 68, 2.1-2.2 : 31, 11.6 : 8,
Gas entrainment, 4.1-4.6 : 16	12.1-12.6 : 33
Gas oil ratio (GOR), defined, 3.1-3.5 : 23	Head ratio (H_r) , defined, 12.1-12.6 : 41
Gas volume fraction (GVF), defined, 3.1-3.5 : 23	Head reduction factor (R_h) , 12.1-12.6 : 53
Gaskets and joint bolting	defined, 12.1-12.6 : 41
pressure containment fastener load requirement, 5.1-	Head shaft coupling, 2.3 : 29 f., 29
5.6 : 21	Heavy-duty pusher seals, 12.1-12.6 : 81, 82f.
Gaskets, 8.1-8.5 : 17	Helico-axial pumps, 1.3 : 123, 123f.
Gauge head (h_a) [H_{max}], defined, 1.1-1.2 : 68, 2.1-2.2 : 31,	Hermetic integrity test

Hermetic integrity test — Continued	alternate pump mounting, 9.6.2 : 9
acceptance criteria alternatives, 4.1-4.6 : 28	anchored, ungrouted metal baseplate, 9.6.2 : 9
duration, 4.1-4.6 : 27	anchored, ungrouted nonmetal baseplate, 9.6.2 : 9
objective, 4.1-4.6 : 27	applicable pump types, 9.6.2 : 1
parameters, 4.1-4.6 : 27	coordinate system, 9.6.2 : 2f.
procedure, 4.1-4.6 : 27	criteria for loading allowances, 9.6.2 : 3
test fluid, 4.1-4.6 : 27	definitions, 9.6.2 : 2
test pressure, 4.1-4.6 : 27	driver/pump coupling alignment, 9.6.2 : 3
test temperature, 4.1-4.6 : 27	group 1 defined, 9.6.2 : 2
Hermetic integrity test acceptance criteria, 5.1-5.6 : 49	group 2 defined, 9.6.2 : 2
objective, 5.1-5.6 : 49	group 3 defined, 9.6.2 : 2
parameters, 5.1-5.6 : 49	grouted nonmetal baseplate with anchor bolts, 9.6.2: 9
procedure, 5.1-5.6 : 49	internal pump distortion, 9.6.2 : 3
Hermetic, defined, 5.1-5.6 : 1	material specification list, 9.6.2 : 4t.
Heterogeneous mixture, 6.1-6.5 : 34, 12.1-12.6 : 40	nomenclature and definitions, 9.6.2 : 1
Heterogeneous slurries, 12.1-12.6 : 45	nozzle load adjustment factors, 9.6.2: 8
HI 40.6, 40.7 : 2	nozzle stress, 9.6.2: 3
HI Board, defined, 40.7: 1	pressure rating, 9.6.2 : 4
HI Graphics Style Guideline, 40.7: 11	pump hold-down bolts, 9.6.2 : 3
HI method	pump mounting, 9.6.2 : 3
generalized method based on empirical data, 9.6.7 : 3	scope, 9.6.2 : 1
new method versus old method, 9.6.7 : 3	spring-mounted metal baseplate, 9.6.2 : 9
overview of procedure, 9.6.7 : 5	stilt-mounted metal baseplate, 9.6.2 : 9, 9f.
synopsis, 9.6.7 : 3	temperature and material adjustment factors, 9.6.2 : 9
HI method for predicting performance of rotodynamic	temperature of pressure-containing components, 9.6.2:
pumps on Newtonian liquids of viscosity greater	4
than that of water, 9.6.7 : 1	Horizontal gratings, 9.8 : 65–66
HI website, 40.7 : 14	Horizontal multistage pump, 20.3 : 5 t.
contents, 40.7 : 14	Horizontal pump, 6.1-6.5 : 1f., 1
defined, 40.7 : 1	Horizontal tank, 9.8 : 69–70, 70f., 71f.
High-chromium iron, 12.1-12.6 : 67	HPRT. See Hydraulic power recovery turbine (HPRT)
High-speed integral gear-driven pumps, 1.1-1.2 : 2 f., 6	Hydraulic power recovery turbine (HPRT), 1.3 : 115
High speed, integral gear, close coupled, single stage	HVAC pumps, 9.6.1 : 12
pump, 2.1-2.2 : 24 f.	Hydraulic action, 8.1-8.5: 17
HI-NEMA type C face-mounted motors, standard	Hydraulic axial thrust balance, defined, 5.1-5.6 : 14
dimensions, 1.1-1.2 : 84	Hydraulic condition monitoring failure modes, 9.6.9 : 21t.
for HI-NEMA type HP and HPH vertical solid-shaft	Hydraulic degradation, 9.6.9 : 12
motors (US customary units), 2.1-2.2 : 89 t., 90 f.	Hydraulic disturbances, 9.6.4 : 18
for type JM, alternating current, face-mounting, close-	Hydraulic horsepower. See Pump output power
coupled pump motors (US customary units), 2.1-2.2:	Hydraulic Institute contact information, 4.1-4.6 : 26
85 t.	Hydraulic Institute pump icons, 1.1-1.2 : 11, 73, 74 f.–81 f.
for type JP, alternating current, face-mounting, close-	Hydraulic losses, 9.6.7 : 19
coupled pump motors (US customary units), 2.1-2.2 :	Hydraulic parasitic losses, defined, 4.1-4.6 : 9
87 t.	Hydraulic performance acceptance tests (rotodynamic
for types JM and JP, alternating current, face-	pumps), 14.6 : 1
mounting, close-coupled pump motors having rolling	conducting at test facilities, 14.6: 1
element contact bearings, 2.1-2.2: 86 t.	See also Factory performance tests; Hydrostatic
Hollow-shaft drivers, 2.1-2.2 : 11, 43, 2.3 : 28 f., 28	pressure testing; Mechanical tests
coupling dimensions, 2.1-2.2 : 44 t.	See also Model tests for pump acceptance; NPSH
Homogeneous flow (fully suspended solids), defined, 12.1-	tests; Optional tests; Performance tests
12.6 : 40	See also Pump acceptance tests; String tests;
Homogeneous flow, 6.1-6.5 : 34	Thermodynamic test method
Homogeneous mixture, 6.1-6.5 : 34	Hydraulic performance, maintenance inspection for, 9.6.5 :
Homogeneous mixture, defined, 12.1-12.6 : 40	24, 27
Homogeneous slurries, 12.1-12.6 : 45	Hydraulic phenomena, 9.8 : 8–9
Horizontal end suction pumps (ANSI/ASME B73.1 and	Hydraulic piston packing, 8.1-8.5 : 20
B73.3)	applications, 8.1-8.5 : 20

Hydraulic piston packing — Continued	repairs, 11.6 : 23
fitting, 8.1-8.5 : 20, 21f.	report, 11.6 : 24
joint types, 8.1-8.5 : 20, 21f.	requirements, 11.6: 23
Hydraulic power recovery turbine pumps, 1.1-1.2 : 7	setup, 11.6 : 21 f., 22
Hydraulic resonance in piping, 9.6.4 : 18	test liquid, 11.6 : 22
Hydraulic resonance, defined, 1.4: 31, 2.4: 36	test pressure, 11.6: 22
Hydraulic shock. See Water hammer	timing of, 11.6 : 21
Hydraulic unbalance, defined, 9.6.8 : 59	Hysteresis, defined, 4.1-4.6 : 9
Hydrocarbon correction factor, 9.6.1 : 8	lcons, 1.1-1.2 : 11, 73, 74 f.–81 f.
Hydrocarbon physical properties, 6.1-6.5 : 62t., 64t.	Identical performance and dimensional pump, 2.1-2.2 : 19
Hydrodynamic bearing effective support stiffness, 9.6.8 : 30	Identical, defined, 9.6.8 : 59
Hydrodynamic radial bearings, 9.6.9 : 7	Impact testing, defined, 9.6.8 : 59
Hydrogenated nitrile, 12.1-12.6 : 68	Impeller balancing, 2.1-2.2 : 37
Hydrostatic leak test, 7.8 : 7	defined, 2.1-2.2 : 73
Hydrostatic pressure testing, 14.6 : 38	single-plane, 2.1-2.2 : 73
acceptance criteria, 14.6 : 40	two-plane, 2.1-2.2 : 73
application to all pressure-containing items, 14.6 : 38	Impeller between bearings, flexibly coupled, multistage,
certificates, 14.6 : 41	axial (horizontal) split case pump, 1.1-1.2 : 31 f.
containment of liquid, 14.6 : 38	
•	Impeller between bearings, flexibly coupled, multistage,
definitions, 14.6 : 38	radial split case pump, 1.1-1.2 : 32 f.
duration, 14.6 : 40, 40 t.	Impeller between bearings, flexibly coupled, multistage,
item(s) to be tested, 14.6 : 38	radial split-double casing pump, 1.1-1.2 : 33 f.
preparation for, 14.6 : 39	Impeller between bearings, flexibly coupled, single stage,
pressure-containing parts, 14.6 : 38	axial (horizontal) split case pump, 1.1-1.2 : 29 f.
procedure, 14.6 : 39	pump dimensions (letter designations), 2.1-2.2 : 59, 62
rated pressure, 14.6 : 38	f.
records, 14.6 : 40	Impeller between bearings, flexibly coupled, single stage,
repairs, 14.6 : 40	axial (horizontal) split case pump, pump on baseline
reports, 14.6 : 41	(pump dimensions letter designations), 1.1-1.2 : 59,
test liquid, 14.6 : 39	62 f.
test pressure, 14.6 : 39	Impeller between bearings, flexibly coupled, single stage,
timing of, 14.6 : 38	radial split case pump, 1.1-1.2 : 30 f.
Hydrostatic test assembled pump, 6.6 : 14	Impeller between-bearing pumps, 1.1-1.2: 3 f., 6
components, 6.6 : 14	impeller configuration and specific speeds, 2.1-2.2 : 20 f.
duration, 6.6 : 14	Impeller designs
objective, 6.6 : 13	axial flow, 2.1-2.2 : 10 f., 11, 11 f.
parameters, 6.6 : 14	classification method, 2.1-2.2: 8
procedure, 6.6: 14	double suction radial flow, 2.1-2.2: 10 f.
records, 6.6 : 14	general types, 2.1-2.2 : 10 f.
temperature, 6.6: 14	mixed flow, 2.1-2.2 : 10 f., 10
test liquid, 6.6: 14	propeller pump. See axial flow.
Hydrostatic test pressure, defined, 4.1-4.6 : 9	radial flow, 2.1-2.2 : 10 f., 10
Hydrostatic test, 3.6 : 1, 16, 11.6 : 4, 20	See also Specific speed
acceptance criteria, 11.6: 23	specific speed (n_S) , 2.1-2.2 : 8
certificate, 11.6: 24	suction specific speed (S), 2.1-2.2: 8
containment of liquid, defined, 11.6: 20	Impeller diameter (<i>D</i> ₂), 1.3 : 15, 16f.
definitions, 11.6 : 20	Impeller rotordynamic coefficients, defined, 9.6.8 : 60
item(s) to be tested, defined, 11.6: 21	Impeller seal face, defined, 12.1-12.6: 43
longer test periods for certain castings, 11.6 : 23, 23 t.	Impeller types, 2.1-2.2 : 16
on components or assembled pumps, 3.6 : 16	Impeller width at discharge (b_2) , 1.3 : 15, 16f.
parameters, 3.6 : 16	Impellers, 1.3 : 1, 11, 12.1-12.6 : 68–69
preparation for testing, 11.6 : 22	balance of slurry pump type, 9.6.4 : 13
pressure-containing parts, defined, 11.6 : 20	balance quality grade G6.3 or better, 9.6.4 : 13, 14 f.,
procedure, 3.6 : 18, 11.6 : 22	15 f.
purpose, 11.6 : 21	change in diameter and effect on flow rate, head, and
rated pressure, defined, 11.6 : 20	power, 2.3 : 37, 38 f.
records, 3.6 : 18	double suction, 1.3 : 13, 13f. , 2.3 : 6 f., 6
1000140, 010. 10	acable edecicity rie. 10, 101., 210. 0 1., 0

Impellers — Continued	Inlet (suction) pressure (p _s), definition and equation, 3.1-
enclosed, 1.3 : 13, 13f., 2.3 : 5, 6 f.	3.5 : 21, 3.6 : 6
in sump pump configuration, 2.3 : 63 f., 64, 65, 72 f., 73	Inlet bell clearance C_f , 9.8 : 20
in VS4 line-shaft design sump pumps, 2.3: 63, 64, 65	Inlet bell design diameter (D), 9.8: 42, 43f44f.
in VS5 cantilever shaft design sump pumps, 2.3: 72 f.,	acceptable velocity ranges for, 9.8: 43t.
73	inlet bell velocity, 9.8 : 42
inducer first-stage, 2.3: 7, 7 f.	Inlet bell or volute diameter Db , 9.8: 20
inducers (special suction impellers), 1.3: 14, 14f.	Inlet bell velocity, 9.8: 42
maintenance, 12.1-12.6 : 95	Inlet or target baffle, 9.8: 82, 82f.
multistage pumps, 1.3: 13	Inlet stabilizers, 7.8 : 14
open axial flow, 2.3: 6, 6 f.	Inlet system, 6.1-6.5 : 47–53
open impellers and two-phase pumping, 1.3 : 125	booster pumps, 6.1-6.5 : 53
open, 1.3 : 14, 14f.	connection of piping sections, 6.1-6.5 : 50f.
removal of, 12.1-12.6 : 92	foot valve, 6.1-6.5 : 50
semi-open impeller showing diameter locations (cross	high points in piping system, 6.1-6.5 : 50
section), 1.3 : 30f.	inlet line valve, 6.1-6.5 : 50
semi-open impeller with full back shroud, 1.3: 29f.	inlet piping diameters, 6.1-6.5 : 48, 50f.
semi-open impeller with scalloped back shroud, 1.3:	inlet piping, 6.1-6.5 : 50
29f.	inlet pressure gauge, 6.1-6.5 : 53
semi-open, 1.3 : 14, 14f., 2.3 : 6 f., 6	liquid source features, 6.1-6.5 : 48
single suction, 1.3 : 12f., 12	multiple-pump installations, 6.1-6.5 : 48
single-plane spin balance, 9.6.4 : 13, 16 f.	pulsation dampener, 6.1-6.5 : 54
top suction impellers and two-phase pumping, 1.3 :	screens or strainers, 6.1-6.5 : 50, 53f.
125, 125f.	suction system relationships, 6.1-6.5 : 51f., 52f., 54
two-plane (dynamic) balancing, 9.6.4 : 13, 16 f.	suction tanks, 6.1-6.5 : 48f., 54
types, 1.3 : 11, 12f.	Inlet total head, definition, 40.6 : 15
with back rings, and axial thrust, 2.3: 9 f., 10	Inlet vacuum. See Inlet pressure
with no back rings, and axial thrust, 2.3: 11	Inlet, defined, 3.1-3.5 : 16
Implementation of EDE, 50.7 : 20	Inner magnet assembly (driven), defined, 4.1-4.6 : 9, 5.1-
and handling of extra data, 50.7 : 20	5.6: 17
and non-HI data, 50.7 : 21	Inner rotor assembly, defined, 5.1-5.6 : 14
and R/D/S compliance levels, 50.7 : 20	Input data requirements, 9.6.8 : 64
and support for API 610/ISO 13709 data sheets, 50.7 :	for structural analysis (OH or BB pumps), 9.6.8 : 66
20	general information needed, 9.6.8 : 66
and units of measure, 50.7 : 21	information required for a torsional rotordynamic
Step 1: Integrating with HI-EDE data elements, 50.7 : 20	analysis, 9.6.8 : 65
	level 1 analysis, 9.6.8 : 64
Step 2: Producing and importing HI-EDE compliant documents, 50.7 : 21	level 2 and 3 analysis, 9.6.8 : 64 motor information for a lateral structural analysis (level
Step 3: Testing the implementation, 50.7 : 21	2), 9.6.8 : 66
Indicators, 9.6.9: 27	motor information for a lateral structural analysis (level
defined, 9.6.5 : 55	3), 9.6.8 : 66
with causes and failure modes, 9.6.5 : 2, 36t.	Inside-adjustable lost-motion valve gear, 8.1-8.5 : 7f.
Inducer impellers, 2.3 : 7, 7 f.	Inside-fixed lost-motion valve gear, 8.1-8.5 : 7f.
Inducers, 1.3 : 14, 14f.	Inspection, 6.1-6.5 : 80
Induction motor, defined, 5.1-5.6 : 16	Installation, 12.1-12.6 : 86, 4.1-4.6 : 21, 6.1-6.5 : 68, 8.1-
Industry partnerships, 50.7 : 2	8.5 : 15
Inert gas sniffer test, 4.1-4.6 : 27	access for maintenance, 3.1-3.5: 55
Inflow pipe, circular pump stations, 9.8 : 20	alignment, 3.1-3.5 : 58
Influence of disk friction losses on viscosity correction	bearings, 6.1-6.5 : 73
factor for efficiency, 9.6.7 : 20f.	belt guards, 3.1-3.5 : 60
Information flows, 50.7 : 4, 6 f.	cautions, 4.1-4.6 : 21
Informative content, 50.7 : 4	cleaning, 3.1-3.5 : 54
Informative, 9.6.9 : 27	codes, 3.1-3.5 : 54
Informative, defined, 9.6.5 : 55	couplings, 3.1-3.5 : 58
Inherent balance, 9.6.4: 15	drive alignment, 6.1-6.5 : 71
Injection quills, 7.8 : 14, 15f	flanges and fittings, 6.1-6.5 : 69

Installation — Continued	clearance setting, 1.4: 21, 2.4: 25
flexible coupling, 6.1-6.5 : 71	control, monitoring, and alarm equipment, 1.4: 25, 2.4
forces and moments, 6.1-6.5 : 69	28
foundation, 3.1-3.5 : 55	coupling guard, 1.4 : 25
gaskets, 6.1-6.5 : 71	couplings for discharge pipe joints, 2.4 : 27
gear drive, 6.1-6.5 : 71	dial indicator method of alignment, 1.4 : 23, 23 f.
grouting, 3.1-3.5 : 57, 57f.	discharge valve expansion joint, 1.4 : 20 f.
leveling the unit, 6.1-6.5 : 69	discharge valves, 1.4 : 20, 2.4 : 23
leveling, 3.1-3.5 : 57, 57f.	driver coupling or clutch, 2.4 : 26
location, 3.1-3.5 : 55	elbow at pump suction, 1.4 : 19, 2.4 : 22
lubrication, 6.1-6.5 : 73	electrical controls, 2.4 : 27
manufacturer's instructions, 3.1-3.5 : 54	electrical splices and connections, 2.4: 27
mounting the driver, 3.1-3.5 : 56	electrical, 1.4 : 25, 2.4 : 28
pipe dope and tape, 6.1-6.5 : 71	entrained air, 2.4 : 21
piping, 3.1-3.5 : 60, 6.1-6.5 : 69	expansion joints and couplings, 1.4 : 18
piston rod packing, 6.1-6.5 : 73–78	factory support requirements, 1.4: 15, 2.4: 16
pressure relief valves, 3.1-3.5 : 62	flexible coupling, defined, 1.4: 22
priming, 6.1-6.5 : 70	flow inducers, 2.4: 22
protective devices, 3.1-3.5 : 63	foundation, 1.4 : 16, 2.4 : 18
relief valve set pressure, 6.1-6.5 : 70, 70t.	grouting, 1.4 : 18, 2.4 : 20
rotation check, 3.1-3.5 : 58	hot alignment considerations, 1.4: 25, 2.4: 28
special requirements, 4.1-4.6 : 21	installation of horizontal pumps, 1.4: 21
strainers, 3.1-3.5 : 62	laser method of alignment, 1.4: 24
types of misalignment, 3.1-3.5: 58f.	leveling, 1.4 : 17, 2.4 : 19
V-belt drive, 6.1-6.5 : 71, 72t., 73f.	lightning and surge protection for submersible motors
V-belt sheaves and synchronous sprockets, 3.1-3.5 :	2.4 : 27
59, 60f.	location, 1.4: 16, 2.4: 16
Installation alignment, 5.1-5.6 : 40	lubrication, priming, and cooling systems, 1.4: 25, 2.4
auxiliary connections, 5.1-5.6 : 41	28
caution notice, 5.1-5.6 : 39	maximum water temperature, 2.4: 27
coupling alignment (MDP), 5.1-5.6: 40	minimum required velocity, 2.4: 27
foundation (CMP), 5.1-5.6 : 40	nozzle loads, 1.4 : 21, 2.4 : 24
foundation (MDP), 5.1-5.6 : 39	parallel alignment, checking, 1.4: 22
leveling, 5.1-5.6 : 40	parallel misalignment, 1.4 : 22
location and foundation, 5.1-5.6 : 39	pipe reducers, 1.4 : 19, 2.4 : 22
Installation section, 1.4: 15, 2.4: 16	pipe supports/anchors/joints, 1.4: 18, 2.4: 20
air and vacuum release valves for wet-pit and well	piping and connections, 1.4: 18, 2.4: 20
pumps, 2.4 : 23	piping, general guidelines, 1.4: 18, 2.4: 20
air release valves for self-priming pumps, 1.4: 20	ratio of reverse runaway operation speed (n_{ro}) to
alignment of gear couplings, 1.4: 24	normal operation speed (nno), 2.4 : 28
alignment of gear-type couplings, 1.4 : 24 f.	realignment, 1.4 : 21
alignment of spacer couplings, 1.4: 24	reasons to install check valves, 2.4 : 24
alignment of spacer-type couplings, 1.4 : 24 f.	reverse runaway speed, 1.4: 26
alignment steps, 1.4: 21	rigging and lifting, 1.4 : 16, 2.4 : 19
alignment, 1.4 : 21, 2.4 : 25	seismic analysis, 1.4 : 16, 2.4 : 19
alignment, general, 1.4 : 21	shaft/coupling alignment, 1.4 : 22
angular misalignment, 1.4 : 22	siphon breaker, 1.4 : 20, 2.4 : 23
assembly on site, 1.4 : 16, 2.4 : 16	siphons, 1.4 : 20, 2.4 : 23
auxiliary (driver, coupling, etc.), 2.4 : 25	soft foot, causes, 1.4 : 22
baseplate, 1.4 : 17, 2.4 : 19	soft foot, defined, 1.4 : 22
check valves, 1.4 : 21, 2.4 : 24	special couplings, 1.4 : 25
check valves, to prevent loss of prime, 1.4 : 21	special driver considerations for submersible units
check valves, used in series-parallel connections, 1.4 :	(type VS0), 2.4 : 26
21	speed versus torque requirements, 2.4 : 27
checking wells, 2.4 : 17	steady bushing, 2.4 : 26
checking wet pits, 2.4 : 17	stopping unit/reverse runaway speed, 2.4 : 28
clear siphon of air, 1.4 : 20, 2.4 : 23	straightedge alignment tools, 1.4 : 22

nstallation section — Continued	straight pipe required before venturi meter, 11.6 : 38t.
straightedge method of alignment, 1.4 : 22	temperature measurement and instruments, 11.6 : 43
strainers, 1.4 : 21, 2.4 : 25	ultrasonic flowmeters, 11.6 : 40
submersible motor selection, 2.4 : 27	Intake design, 1.3 : 83, 2.3 : 42
suction piping failure, 2.4 : 21	Intake structure
suction piping requirements, 1.4: 18, 2.4: 21	for clear liquid see clear liquid, intake structures for
suction pressure below atmospheric pressure, 2.4: 21	designing, 9.8 : 9–10
suction tanks, 1.4 : 19, 2.4 : 22	Integral motors (CMP) cooling, 5.1-5.6 : 23
suction valves and manifolds, 1.4: 19, 2.4: 22	explosionproof, 5.1-5.6 : 23
tie rods, 1.4 : 18	external cooling requirements, 5.1-5.6 : 23
tie rods, total axial rigidity, 1.4 : 18	Intended audience, 50.7 : 3
types of cable for submersible motors, 2.4 : 27	additional data to support data sheet, 50.7: 14
typical foundation bolt design, 1.4 : 17 f.	and HI-EDE implementation, 50.7 : 20
V-belt drive, 1.4 : 25	data sheet, 50.7 : 8, 9 f.
vertical hollow shaft drivers, 2.4 : 26	ISO 13709 Standard for Centrifugal Pumps for
vertical solid shaft drivers, 2.4 : 25	Petroleum, Petrochemical and Natural Gas
water hammer, 2.4 : 24	Industries, 50.7 : 1, 3, 8
nstallation under submerged conditions, 40.6: 17	ISO 8879 Standard Generalized Markup Language
nstallation, operation, and maintenance manual reference	(SGML), 50.7 : 2
information, 1.4 : 4, 2.4 : 4	See also R/D/S/A compliance
nstitute of Electrical and Electronic Engineers, 5.1-5.6 : 47	Intermittent service, 2.3 : 39
nstructions for determining pump performance on a	Internal bearings
viscous liquid when performance on water is	active magnetic bearing systems, 5.1-5.6 : 23
known, 9.6.7 : 8	auxiliary bearing system for magnetic bearings, 5.1-
nstrument calibration interval, 3.6 : 25, 26 t., 6.6 : 23,	5.6 : 23
23t., 14.6 : 65, 65 t.	design considerations, 5.1-5.6 : 22
nstrumentation, 7.6 : 8, 9.6.4 : 3, 11.6 : 35	filtration of bearing lubricating liquid, 5.1-5.6 : 22
rate of flow measurement, 11.6 : 37	materials, 5.1-5.6 : 22
calibration intervals, 11.6 : 37	Internal clearance factors, 20.3 : 2
fluctuation and accuracy, 7.6: 8	Internal gear pumps, 3.1-3.5 : 5f., 6f.
head measurement, 11.6 : 40	applications, 3.1-3.5 : 10
magnetic flowmeters, 11.6 : 40	close coupled, 3.1-3.5 : 25f
maximum permissible short-term speed fluctuation,	description, 3.1-3.5 : 10
11.6: 43	flange mounting, 3.1-3.5 : 24f.
measurement of head by means of gauges, 11.6 : 42,	foot mounting, 3.1-3.5 : 24f.
43f.	frame mounting, 3.1-3.5 : 25f.
measurement uncertainty, 11.6 : 35	pinion-drive type, 3.1-3.5 : 10f.
methods of rotary speed measurement, 11.6 : 42	pump range, 3.1-3.5 : 10f.
objective, 11.6 : 35	with crescent, 3.1-3.5 : 14f.
orifice plate calibration, 11.6 : 39	without crescent, 3.1-3.5: 14f.
other methods of flow rate measurement, 11.6 : 40	Internal sleeve bearings, 4.1-4.6 : 14
Pitot tubes, 11.6 : 39	International Organization for Standards, 5.1-5.6 : 48
pressure differential flowmeter types, 11.6 : 38	Intrinsic induction, defined, 4.1-4.6 : 9
pressure tap locations, 11.6 : 40	Introduction and safety section, 1.4: 4, 2.4: 4
pump input power measurement, 11.6 : 42	applying heat to disassemble pump, 1.4 : 6, 2.4 : 6
rate of flow measurement by pressure differential	ATEX cycles modified a 1.4: 8
meter, 11.6 : 38, 38 t., 39t.	ATEX example markings, 1.4 : 8
rate of flow measurement by weirs, 11.6 : 39	avoiding excessive surface temperatures, 1.4 : 9, 2.4 : 9
rate of flow measurements from noncontact-type	correct lubrication, 1.4 : 7, 2.4 : 7
flowmeters, 11.6 : 40	drain pump, 1.4 : 6, 2.4 : 6
rate of flow measurements from rotating-type	dry pump, 1.4 : 7, 2.4 : 7
flowmeters, 11.6 : 39	electrical safety symbol, 1.4 : 4, 2.4 : 4
requirements for static pressure taps, 11.6 : 40f.	Ex rating, 1.4: 8
straight pipe downstream of pressure tap of nozzle or orifice plate meter, 11.6 : 39 t.	excessive external pipe load, 1.4 : 7, 2.4 : 7 explanation of designations (safety terminology and
straight pipe required before nozzle or orifice plate,	symbols), 1.4 : 4), 2.4 : 4
11.6: 38t.	explosive atmosphere zone symbol, 1.4 : 5, 2.4 : 5
1 11 3 , 001,	OMPRODING GUILLOUPLICEG ZOLLO GYLLDOL. LIT. O. ZIT. U

fluoro-elastomers, 1.4: 6, 2.4: 6	L. See Stroke
general guidelines, 1.4 : 5, 2.4 : 5	Laminar region, defined, 12.1-12.6: 42
guard removal, 2.4 : 6	Lantern rings, 12.1-12.6 : 71–73
guards, 1.4 : 6	defined, 3.1-3.5 : 18
handling components, 1.4: 6, 2.4: 6	materials, 12.1-12.6 : 74
hazardous and toxic fluid safety symbol, 1.4: 5, 2.4: 5	Large motor mounting plate structure, 9.6.8 : 81f.
hazardous liquids, 1.4: 7, 2.4: 7	Lateral critical speed analysis for OH or BB pumps, 9.6.8:
hot and cold parts, 1.4 : 7, 2.4 : 7	30
important instruction symbol, 1.4: 5, 2.4: 5	Lateral forced response analysis of OH or BB pumps,
leakage prevention, 1.4: 10	9.6.8 : 53
legal requirement, 1.4: 4, 2.4: 4	analysis, 9.6.8 : 54
lock out - tag out, 1.4: 6	interpretation of results, 9.6.8: 54
maintenance plan and schedule, 1.4: 11, 2.4: 11	model, 9.6.8 : 54
maintenance to avoid risk of explosion, 1.4: 11, 2.4:	validation, 9.6.8 : 54
11	Lateral forced response analysis of VS pumps, 9.6.8 : 54
marking and approvals, 1.4: 4, 2.4: 4	Lateral rotordynamic analyses, 9.6.8: 44
marking, 1.4 : 8, 2.4 : 8	analysis, 9.6.8 : 45
material safety data sheet (MSDS), 1.4: 11, 2.4: 11	defined, 9.6.8 : 60
noise level data, 1.4 : 11, 2.4 : 11	methodology, 9.6.8: 44
personnel qualification and training, 1.4: 5, 2.4: 5	model, 9.6.8 : 45
power connection, 2.4: 6	validation, 9.6.8 : 46
preventing buildup of explosive mixtures, 1.4 : 10, 2.4 :	Lateral structural analysis, defined, 9.6.8: 60
10	Lateral vibration, defined, 9.6.8 : 60
preventing leakage, 2.4 : 10	Leak detection, 7.8 : 7
preventing sparks, 2.4 : 10	Leakage monitoring, 9.6.5 : 10, 9.6.9 : 9, 10t.
products used in potentially explosive atmospheres,	application guidelines for seal monitoring, 9.6.9 : 10t.
1.4 : 8, 2.4 : 8	application guidelines, 9.6.5 : 12t.
proper filling and venting, 1.4 : 10	by catch tank, 9.6.9 : 10, 10t.
pump at reduced speed, 1.4 : 7	by change in barrier fluid flow, 9.6.5 : 11, 12t., 9.6.9 :
pump outside allowable operating region, 1.4: 7	10, 10t.
rigging and lifting, 1.4 : 12, 2.4 : 12	by pressure buildup, 9.6.5 : 11, 12t., 9.6.9 : 10t.
risk to safe operation and personal safety symbol, 1.4 :	by visual inspection, 9.6.5 : 10, 12t.
5	condition indicators, 9.6.9 : 25t.
running continuously, 2.4 : 7	control limits, 9.6.9 : 10
safety action, 1.4 : 6, 2.4 : 6	frequency, 9.6.9 : 5t., 10
safety instruction symbol, 1.4: 4, 2.4: 4	in double-walled systems, 9.6.5 : 11
safety labels, 1.4 : 5, 2.4 : 5	in submersible pumps, 9.6.5 : 10
safety, 1.4 : 4	means of monitoring, 9.6.5 : 10, 9.6.9 : 9, 10t.
scope of compliance, 1.4: 8, 2.4: 8	sniffer inspection, 9.6.9 : 9, 10t.
spark prevention, 1.4 : 10	visual inspection, 9.6.9 : 9, 10t.
starting at reduced speed, 2.4 : 7	Letter (dimensional) designations, 3.1-3.5 : 23
suction valves, 1.4 : 7, 2.4 : 7	Letter designations, 12.1-12.6 : 27
summary of conditions and actions, 2.4 : 6	for direct drive pump and motor assembly dimensions
temperature classes, 1.4 : 9, 2.4 : 9	12.1-12.6: 29f.
thermal shock, 1.4 : 6, 2.4 : 6	for horizontal pump dimensions, 12.1-12.6 : 28f.
Irons, 12.1-12.6 : 67	for vertical pump dimensions, 12.1-12.6 : 30f.
ISO 2858 (baseplates), 1.3 : 101, 102f. ISO 5199 (impellers), 1.3 : 35	Level 1 analysis (simple methods), 9.6.8 : 36
	Level 1 analysis methods, 9.6.8 : 37
Isolation shut-off valve, 7.8 : 13 Items utilized, 7.6 : 8	recommended, 9.6.8 : 36 Level 2 analysis (intermediate methods), 9.6.8 : 44
· · · · · · · · · · · · · · · · · · ·	
Jacketed pump, defined, 3.1-3.5 : 18 Job-specific motor reed frequency tested values for	Level 2 analysis introduction, 9.6.8 : 44 methodology, interpretation of results and validation,
dynamic analysis, 9.6.8 : 83	9.6.8: 44
K_A . See Axial thrust factor (K_A)	Level 3 analyses
Keys and keyways, 9.6.4 : 16	lateral rotordynamic anlayses, 9.6.8 : 53
maintenance inspection of, 9.6.5 : 25	methodology, interpretation of results and validation,
K_h . See Pressure gradient factor (K_h)	9.6.8 : 53
S	

Level 3 analysis (advanced methods), 9.6.8 : 53	stuffing box, 6.1-6.5 : 13f., 13
introduction, 9.6.8: 53	upper crosshead, 6.1-6.5 : 6f., 14
lateral rotordynamic analysis, 9.6.8 : 53	valve assembly, 6.1-6.5 : 14, 14f.
structural analyses, 9.6.8 : 53	valve chest cover, 6.1-6.5 : 6, 9f.
torsional rotordynamic analyses, 9.6.8 : 53	valve plate (check valve), 6.1-6.5 : 11f., 12
Level A, 3.6 : 1, 8, 16	Liquid end assembly, defined, 1.1-1.2 : 41, 41 f., 7.8 : 2
acceptable deviation of dependent test quantities from	Liquid expansion factor, 6.1-6.5 : 62, 64f.
specified values for Type III and Type IV testing,	Liquid film bearings, temperature monitoring, 9.6.5 : 7
3.6 : 8	Liquid film, 9.6.9 : 7
acceptable deviation of independent test quantities	Liquid flashing, 9.6.9 : 8
from specified values at the test parameters, 3.6 :	Liquid gap, defined, 4.1-4.6 : 9, 5.1-5.6 : 15
8	Liquid horsepower. See Pump output power
reports, 3.6 : 16	Liquid level, 9.8: 51
Level B, 3.6 : 8, 16, 17 f.	Liquid properties, 4.1-4.6 : 15
acceptable deviation of dependent test quantities from	entrained air or gas, 4.1-4.6 : 16
specified values for Type III and Type IV testing,	high viscosity, 4.1-4.6 : 16
3.6 : 8	liquid vapor pressure, 4.1-4.6 : 16
acceptable deviation of independent test quantities	low viscosity, 4.1-4.6 : 16
from specified values at the test	lubricating liquid, 4.1-4.6 : 17
information data sheet, 3.6 : 16, 17 f.	nonlubricating liquid, 4.1-4.6 : 17
parameters, 3.6 : 8	particles, 4.1-4.6 : 16
reports, 3.6 : 16	specific gravity, 4.1-4.6 : 16
Level control NPSH test with deep sump supply, 6.6 : 15f.	specific heat, 4.1-4.6 : 16
Leveling and grouting, 3.1-3.5 : 57f.	variable viscosity, 4.1-4.6 : 16
Levels of analysis	viscosity, 4.1-4.6 : 15
by methodology, 9.6.8 : 6	Liquid temperature limits on end suction pumps, 1.3 : 83,
See also Analysis levels	4t.
Life cost optimization, 9.1-9.5 : 6	and minimum flow, 1.3 : 79
Life cycle cost evaluation, 4.1-4.6 : 19	calculation, 1.3 : 78
Limitations of the correction method, 9.6.7 : 25	Liquid temperature rise, 1.3 : 78
mechanical considerations, 9.6.7 : 25	Liquid vapor pressure, 4.1-4.6 : 16
sealing issues, 9.6.7 : 25	Liquid viscosity
sealless pumps, 9.6.7 : 27	hydraulic and power losses, 2.3 : 50
Linear polarization resistance (LPR), 9.6.5 : 9	Liquids, 9.1-9.5 : 6
Linear stiffness k defined, 9.6.8: 41	chemical symbols, 9.1-9.5 : 6
Lined type, defined, 12.1-12.6 : 4	defined, 3.1-3.5 : 16
Line-shaft design sump pump (VS4), 2.1-2.2 : 9 f.	effect of dissolved gas only in saturated solution on
Line-shaft horsepower loss due to viscosity, 2.3 : 50	rate of flow of rotary pumps (metric units), 3.1-3.5 :
Link to HI-EDE data dictionary, 50.7 : 31	36f.
Link to HI-EDE units of measure, 50.7 : 31	effect of dissolved gas only in saturated solution on
Liquid	rate of flow of rotary pumps (US customary units),
classification, 4.1-4.6 : 17	3.1-3.5 : 36f.
lubricating, 4.1-4.6 : 17	effect of entrained gas only on rate of flow (metric
nonlubricating, 4.1-4.6 : 17	units), 3.1-3.5 : 35f.
pumped liquid characteristics, 4.1-4.6 : 20	effect of entrained gas only on rate of flow (US
Liquid bypass, 6.1-6.5 : 44, 45f.	customary units), 3.1-3.5 : 35f.
Liquid end, 8.1-8.5 : 2f., 3	effects of temperature and concentration, 9.1-9.5 : 6
cylinder liner, 6.1-6.5 : 6, 9f.	entrained or dissolved gases, 3.1-3.5 : 34
defined, 5.1-5.6 : 14	factors affecting material selection, 9.1-9.5 : 6
gland, 6.1-6.5 : 13, 14f.	general characteristics, 9.1-9.5 : 6
lantern ring (seal cage), 6.1-6.5 : 14, 14f.	handling high or low temperature liquids, 9.1-9.5 : 6
liquid cylinder, 6.1-6.5 : 6, 9f.	identification and properties, 3.1-3.5 : 34
manifolds, 6.1-6.5 : 6, 11f.	pumped, and monitoring of temperature rise, 9.6.5 : 7
packing, 6.1-6.5 : 13, 14f.	specific gravity, 9.1-9.5 : 6
parts, 6.1-6.5 : 6, 7f., 8f., 9f., 10t., 11f.	temperature-sensitive, and temperature monitoring,
piston, 6.1-6.5 : 12, 12f.	9.6.5: 6
plunger, 6.1-6.5 : 2f., 13, 13f.	Lobe pumps, 3.1-3.5 : 1f., 3t., 4t., 5f., 6f., 30f.

Lobe pumps — Continued	maximum temperature limits, 5.1-5.6 : 38, 38t.
configurations, 3.1-3.5: 9	Magnet materials, 4.1-4.6 : 15, 18
description, 3.1-3.5: 9	Magnet, defined, 5.1-5.6 : 17
range chart, 3.1-3.5 : 9f.	Magnetic coupling
single-lobe pumps, 3.1-3.5 : 14f.	defined, 5.1-5.6 : 17
three-lobe pumps, 3.1-3.5 : 14f.	types, 5.1-5.6 : 18
Locked rotor torque, defined, 5.1-5.6 : 16	Magnetic coupling pumps. See Sealless, magnetically
Locked-rotor torque ratings, 6.1-6.5 : 47t., 47	driven rotary pumps
Log decrement, defined, 9.6.8 : 60	Magnetic coupling, defined, 4.1-4.6 : 10
Logo and mark	Magnetic couplings (MDP)
claims to approval, 40.7 : 11	caution in assembling or disassembling drive unit, 5.1 ·
display areas, 40.7 : 15	5.6 : 24
display of Certificate of Pump Laboratory Approval,	coating of outer magnet carrier, 5.1-5.6 : 24
40.7 : 11	heat removal by pumped liquid, 5.1-5.6 : 24
failure to renew participation, 40.7 : 13	Magnetic couplings decoupling of, 9.6.9 : 5, 7, 9
icensing agreement, 40.7 : 15	weakening of at elevated temperatures, 9.6.9 : 8
language requirements, 40.7 : 13	Magnetic drive configurations, 4.1-4.6 : 1, 2f., 3 f., 4 f.
positioning, 40.7 : 14	Magnetic drive pump (MDP), 5.1-5.6 : 2
provision and use of, 40.7 : 12	close couple, cantilevered stationary shaft, 5.1-5.6 : 8f
rectangular, 40.7 : 14 f.	close couple, in-line, fully supported stationary shaft,
referencing program, 40.7 : 11	5.1-5.6 : 10f.
reproduction of, 40.7 : 11	close coupled, end suction, 5.1-5.6 : 3
signage, 40.7 : 11	close coupled, in-line, 5.1-5.6 : 3
square, 40.7 : 13 f.	cover-mounted magnetic drive housing submersible
use of, 40.7 : 11, 15	design, 5.1-5.6 : 54
visual element requirements, 40.7 : 13	flexibly coupled, end suction, 5.1-5.6 : 3
Lomakin effect, defined, 9.6.8 : 60	flexibly coupled, in-line, 5.1-5.6 : 3
LPR. See Linear polarization resistance	flexibly coupled, rotating shaft, 5.1-5.6 : 7f.
I_s . See Static suction lift	multistage end suction design, 5.1-5.6 : 54
Lube piping, 2.3: 65	multistage end suction design, 3.1-3.3 . 34 multistage, 5.1-5.6 : 58f.
Lubricant analysis, 9.6.5 : 16	self-priming end suction design, 5.1-5.6 : 55
and abrasives, 9.6.5 : 18	self-priming 5.1-5.6 : 60f.
and acidity, 9.6.5 : 18	vertical submerged, 5.1-5.6 : 3
and antioxidants, 9.6.5 : 18	vertical submerged, 5.1-5.6. S
and debris, 9.6.5 : 18	housing, 5.1-5.6 : 59f.
and dirt, 9.6.5 : 18	vertical submerged, submersed magnetic coupling
and fibers, 9.6.5 : 18	housing, 5.1-5.6 : 9f.
and lubricant analysis laboratories, 9.6.5 : 17	Magnetic drive pumps. See Sealless, magnetically driven
and particle counting, 9.6.5 : 16, 18	rotary pumps
and spectrographic analysis, 9.6.5 : 16	Magnetic flowmeters, in rate-of-flow monitoring, 9.6.5 : 19
and viscosity, 9.6.5 : 18	Magnetic materials, defined, 4.1-4.6 : 10
and water, 9.6.5 : 18	Magnetically coupled rotary pumps. See Sealless,
control limits, 9.6.5 : 18	magnetically driven rotary pumps
evaluating wear rates, 9.6.5 : 17	Magnets
inorganic contamination of lubricant, 9.6.5 : 17–18	assembly of parts (caution), 4.1-4.6 : 25
measuring contamination of lubricant, 9.6.5 : 17	demagnetization, 4.1-4.6 : 25
measuring tohtamination of labricant, 3.6.5 : 17	handling (cautions), 4.1-4.6 : 26
measuring metal particles from wear, 9.6.5 : 16–17	humidity effects, 4.1-4.6 : 25
organic contamination of lubricant, 9.6.5 : 17	temperature limits, 4.1-4.6 : 24
sampling techniques, 9.6.5 : 18	Main drive (steam) slide valve, 8.1-8.5 : 6
Lubrication or cooling loss, 5.1-5.6 : 15	Main drive (steam) valves, 8.1-8.5 : 6, 6f.
Lubrication, 8.1-8.5 : 18	
defined, 5.1-5.6 : 15	setting (duplex pumps), 8.1-8.5 : 26 setting (simplex pumps), 8.1-8.5 : 27
·	
Magnet (permanent), defined, 4.1-4.6 : 10 Magnet assembly, 4.1-4.6 : 14	Maintenance considerations (metering pumps)
Magnet component temperature factors, 5.1-5.6 : 38	backup systems, 7.8 : 12 equipment access, 7.8 : 12
Magnet drive pump	Maintenance inspection, 9.6.5 : 24
Magnet anve pump	Mantonance inspection, 3.0.3 . 24

Maintenance inspection — Continued	review of parts when disassembled, 4.1-4.6 : 26
for coupling failure, 9.6.5 : 24, 25	sideliners, 12.1-12.6 : 95
for erosion, 9.6.5 : 24, 26	spare parts, 3.1-3.5 : 66
for hydraulic performance, 9.6.5 : 24, 27	special tools, 3.1-3.5 : 66
for shaft bending fatigue, 9.6.5 : 25, 26	troubleshooting, 5.1-5.6 : 43
for shaft breakage, 9.6.5 : 25, 26	Malfunction causes and remedies, 6.1-6.5 : 80, 81t.–83t.,
for shaft torsional fatigue, 9.6.5: 25, 26	8.1-8.5 : 27, 28t.
for shaft torsional overload, 9.6.5: 25, 26	Malfunctions, 3.1-3.5 : 66
frequency, 9.6.5 : 27	causes and remedies, 3.1-3.5: 67t.
of coupling flexible elements, 9.6.5 : 25	Manuals describing installation, operation, and
of keys and keyways, 9.6.5 : 25	maintenance of rotodynamic centrifugal pumps, 1.4:
Maintenance section, 1.4 : 31, 2.4 : 36	1
acceptance criteria and dimensions, 1.4 : 34, 2.4 : 39	applicable pump types, 1.4 : 1
auxiliary equipment, 1.4 : 35, 2.4 : 40	application to IOM manuals, 1.4 : 1
clearances, 2.4 : 39	introduction, 1.4 : 1
cold weather maintenance, 1.4 : 32, 2.4 : 37	scope, 1.4 : 1
consumables, 1.4 : 33, 2.4 : 38	standard outline for writing IOM manuals, 1.4 : 1
fastener torques, rotation direction, and sequence,	Manuals describing installation, operation, and
1.4 : 34, 2.4 : 38	maintenance of rotodynamic vertical pumps, 2.4 : 1
guide, 2.4 : 36	applicable pump types, 2.4 : 1
inspection, 2.4 : 39	application to IOM manuals, 2.4 : 1
pump clearances, 1.4 : 35	introduction, 2.4 : 1
pump disassembly 1.4: 34, 2.4: 38	scope, 2.4 : 1 standard outline for IOM manuals, 2.4 : 1
pump disassembly, 1.4 : 34, 2.4 : 39	
pump inspection, 1.4 : 34	Manufacturer's standard production test, 7.6 : 7, 11.6 : 5
pump reassembly, 1.4 : 35, 2.4 : 39	Market considerations
required tools and fixtures, 1.4 : 33	building trades and HVAC, 9.6.8 : 19t.
schedule, 1.4 : 31, 2.4 : 36	chemical industry, 9.6.8 : 22t.
shaft straightening, 1.4 : 35, 2.4 : 39	drainage and dewatering, 9.6.8 : 24t.
spare parts list, 1.4 : 33	electric power industry, 9.6.8 : 20t.
spare parts, continuous service, 2.4 : 37	fire, 9.6.8 : 25t.
spare parts, intermittent service, 2.4 : 37	flood control, 9.6.8 : 25t.
spare parts, recommended, 2.4 : 37	general industry, 9.6.8 : 23t.
suggested guide, 1.4: 31	irrigation, 9.6.8 : 24t.
tools and fixtures required, 2.4: 38	municipal water and wastewater, 9.6.8: 18t.
wear rings, 2.4 : 37	petroleum industry, 9.6.8 : 21t.
wear/parts replacements, 1.4: 32	pulp and paper, 9.6.8 : 22t.
Maintenance, 3.1-3.5 : 65, 4.1-4.6 : 25, 5.1-5.6 : 42, 12.1-	slurry, 9.6.8 : 23t.
12.6 : 95	water transport, 9.6.8: 26t.
assembly of magnetic parts (caution), 4.1-4.6: 25	Market trends, 9.6.8 : 17t.
canned motor pump, 5.1-5.6 : 43	Martensitic stainless steels, 12.1-12.6: 67
close running fits, 5.1-5.6 : 43	Mass elastic data, defined, 9.6.8 : 60
dismantling or reassembling a magnetically driven pump, 5.1-5.6 : 43	Mass elastic modeling, defined, 9.6.8 : 60 Material selection
draining containment shell, 4.1-4.6: 25	responsibilities of purchaser and manufacturer, 5.1-
factory repair return or transport procedure, 5.1-5.6 :	5.6 : 37
43	Materials, 4.1-4.6 : 18
frequency of inspection, 4.1-4.6 : 26	and corrosion, 5.1-5.6 : 24
handling magnets (cautions), 4.1-4.6 : 26	and welding, 5.1-5.6 : 25
hard irons, 12.1-12.6 : 95	chemical and physical certifications, 5.1-5.6 : 25
impellers, 12.1-12.6 : 95	Materials hardness, 3.1-3.5 : 45f.
inspection schedule, 5.1-5.6 : 43	Maximum allowable casing pressure, defined, 3.1-3.5 : 20
mechanical seals, 3.1-3.5 : 66	Maximum allowable casing working pressure, defined,
out of service procedure, 5.1-5.6 : 42	12.1-12.6 : 37
packing installation, 3.1-3.5 : 66	Maximum allowable continuous speed $[n_{max all}]$, defined,
periodic lubrication, 3.1-3.5 : 65	1.1-1.2 : 68, 2.1-2.2 : 31
preventive, 3.1-3.5 : 65	Maximum allowable flow $[Q_{max all}]$, defined, 1.1-1.2 : 68
F	max air i, doing of the contract of the contra

Maximum allowable flow $[Q_{max all}]$, defined, 2.1-2.2 : 31 Maximum allowable inlet (suction) pressure, defined, 3.1-	thin-plate weirs (flow rate), 14.6 : 62 turbine meters (flow rate), 14.6 : 62
3.5 : 21	Measurement equipment, 40.6 : 22
Maximum allowable inlet working pressure, defined, 3.6 : 6	arrangement for determination of reference plane of
Maximum allowable working pressure (<i>MAWP</i>), defined,	spring pressure gauges, 40.6 : 22 f.
1.1-1.2 : 73, 2.1-2.2 : 37, 7.8 : 3	differential pressure flow measurement devices, 40.6
Maximum discharge pressure [$p_{d max}$ or $p_{2 max op}$], defined,	23
2.1-2.2: 37	electromagnetic method, 40.6 : 23
	electronic pressure transducers, 40.6 : 22
Maximum suction pressure $(p_{s max})[p_{1 max op} \text{ or } p_{1 max all}],$	
defined, 1.1-1.2: 72, 2.1-2.2: 35	for measurement of flow rate, 40.6 : 23
Maximum differential pressure (Δp_{max}), defined, 3.1-3.5 :	for measurement of head, 40.6 : 22
21, 3.6 : 6	for measurement of rotating speed, 40.6 : 22
Maximum flow, 2.3 : 41	manometers, 40.6 : 22
operation above BEP, 2.3 : 41	spring pressure gauges, 40.6 : 22
Maximum particle size, defined, 12.1-12.6 : 40	thin-plate weirs, 40.6 : 23
Maximum pump input power, 14.6 : 12	turbine meters, 40.6 : 24
Maximum pump motor unit input power, 11.6 : 6, 14.6 : 12	ultrasonic method, 40.6 : 24
Maximum required net positive suction head, 11.6 : 6,	velocity area methods, 40.6 : 23
14.6 : 12	Measurement of airborne sound, 9.1-9.5: 28
Maximum suction pressure, defined, 12.1-12.6 : 36	airborne sound level test report, 9.1-9.5 : 41 f.
Maximum value of deposit velocity (V_{smax}), 12.1-12.6 : 50,	application of standard, 9.1-9.5 : 28
49f.	calculation and interpretation of readings, 9.1-9.5 : 39
defined, 12.1-12.6 : 41	cause of errors, 9.1-9.5 : 38
Maximum working pressure, defined, 4.1-4.6 : 10, 5.1-5.6 :	graphic plot of octave-band data, 9.1-9.5: 40
18	instrumentation, 9.1-9.5: 28
Maxwell, defined, 4.1-4.6 : 10	measurement technique, 9.1-9.5: 38
MDP precautions, 5.1-5.6 : 39	measurements to be taken, 9.1-9.5: 38
piping, 5.1-5.6 : 40	microphone locations, 9.1-9.5 : 29
power monitors, 5.1-5.6 : 41	observer and measuring instrument distance, 9.1-9.5
receipt of pump unit, 5.1-5.6 : 39	38
MDP. See Magnetic drive pump, 5.1-5.6 : 2	operation of pumping equipment, 9.1-9.5 : 28
Mean effective particle diameter (d50), 12.1-12.6 : 39t.	precautions in test setup, 9.1-9.5 : 39
defined, 12.1-12.6 : 39	presentation of data, 9.1-9.5 : 40
Measurement	purpose of standard, 9.1-9.5 : 28
locations and directions, 9.6.4 : 4, 5 f.	tabulation of test data, 9.1-9.5 : 40
probes, 9.6.4 : 3	test environment, 9.1-9.5 : 28
Measurement equipment for deep-well pumps, 14.6 : 64	test report, 9.1-9.5 : 40
differential pressure devices (flow rate), 14.6 : 61	time period, 9.1-9.5 : 38
electronic pressure transducers, 14.6 : 60	Measurement of pump power input, 40.6 : 24
	calculation from torque, 40.6 : 24
for electric power measurements, 14.6 : 63 for electromagnetic method (flow rate), 14.6 : 62	
for flow rate, 14.6 : 61	torque, 40.6 : 24 Mechanical losses, 9.6.7 : 18
for head, 14.6 : 60	Mechanical problems, 9.6.4 : 17
for motor pump unit overall efficiency, 14.6 : 64	Mechanical processes in pumping, 9.1-9.5 : 12
for motor pump units with common axial bearing, 14.6 :	crevice corrosion, 9.1-9.5 : 12
64	thermal or hydraulic shock, 9.1-9.5 : 12
for pump power input, 14.6 : 63	velocity effects, 9.1-9.5 : 12
for pumps with inaccessible ends, 14.6 : 63	Mechanical safety considerations, 4.1-4.6 : 19
for rotating speed, 14.6 : 60	Mechanical seal faces, 9.6.9 : 7
for torque measurement, 14.6 : 63	Mechanical seal, defined, 1.4 : 28, 3.1-3.5 : 18
for tracer and other methods (flow rate), 14.6 : 62	Mechanical seals, 2.3 : 20, 9.6.7 : 25, 12.1-12.6 : 77
for ultrasonic method (flow rate), 14.6 : 62	and API Plan 02, 12.1-12.6 : 84
for velocity area methods (flow rate), 14.6 : 62	and API Plan 11, 12.1-12.6 : 84
for volumetric method (flow rate), 14.6 : 61	and API Plan 32, 12.1-12.6 : 84
for weighing method (flow rate), 14.6 : 61	and API Plan 52, 12.1-12.6 : 84
special cases, 14.6 : 63	and API Plan 53, 12.1-12.6 : 84
spring pressure gauges, 14.6: 60, 60 f.	and API Plan 54, 12.1-12.6 : 84

Mechanical seals — Continued	Meters
and API Plan 62, 12.1-12.6: 85	for measuring power, 9.6.9 : 6
and quenches, 12.1-12.6 : 79	for measuring rate of flow, 9.6.9 : 13
and water quality, 12.1-12.6 : 84, 84t.	for measuring speed (rpm), 9.6.9: 14
barrier fluid, 12.1-12.6 : 38	Method for estimating net positive suction head required
buffer fluid, 12.1-12.6 : 38, 79	(NPSH3), 9.6.7 : 21
carbon graphite, 12.1-12.6 : 85	cautionary statement, 9.6.7 : 21
classified by arrangement, 2.3 : 20 f.	example (metric units), 9.6.7: 22
classified by design, 2.3: 21 f.	example (US customary units), 9.6.7: 24
dual pressurized seals, 12.1-12.6: 38, 79-80, 80f.	example calculations (metric units), 9.6.7 : 23t.
dual seals, 12.1-12.6 : 37	example calculations (US customary units), 9.6.7: 24t
dual unpressurized seals, 12.1-12.6: 38	example NPSH3 chart (metric units), 9.6.7: 23f.
external flush fluid, 12.1-12.6: 38	example NPSH3 chart (US customary units), 9.6.7:
flow rates required to create 4.6 m/s velocity past	24f.
pushing, 12.1-12.6 : 79, 78f.	suction inlet geometry variable A, 9.6.7: 22
flush arrangements, 12.1-12.6 : 84–85	Methods for rotodynamic pump efficiency testing, 40.6: 1
for heavy-duty slurry pumps, 12.1-12.6 : 79, 79f.	scope, 40.6 : 1
heavy-duty pusher seals, 12.1-12.6: 81, 82f.	Methods that deal with the actual internal hydraulic losses
losses due to viscosity, 2.3: 51	of the pump, 9.6.7 : 2
materials, 12.1-12.6 : 85	Metric units, 1.3 : 4, 5t.
nonpusher seals, 12.1-12.6 : 37	Microphone locations, 9.1-9.5 : 29
nonpusher split seals, 12.1-12.6 : 82, 83f.	double case BB5 pump, 9.1-9.5 : 33 f.
pusher seals, 12.1-12.6 : 37	horizontal end suction centrifugal pump, 9.1-9.5 : 30 f.
pusher split seals, 12.1-12.6 : 82	horizontal reciprocating pump, 9.1-9.5 : 34 f.
secondary seals, 12.1-12.6 : 38	horizontal rotary gear pump, 9.1-9.5 : 36 f.
silicon carbide, 12.1-12.6 : 85	horizontal rotary screw pump, 9.1-9.5 : 36 f.
single seals, 12.1-12.6 : 77–79	horizontally split multistage rotodynamic pump, 9.1-
single seals, application limits of, 12.1-12.6: 79, 77t.	9.5 : 34 f.
single seals, defined, 12.1-12.6 : 38	horizontally split rotodynamic pump, 9.1-9.5 : 31 f.
single-spring elastomeric bellows seals, 12.1-12.6: 80,	vertical in-line centrifugal pump, 9.1-9.5 : 32 f.
81f.	vertical reciprocating pump, 9.1-9.5 : 35 f.
specialty designs, 12.1-12.6: 84, 83f.	vertical rotary pump, 9.1-9.5 : 37 f.
terminology, 12.1-12.6 : 37–38	VS1 pump, 9.1-9.5 : 38 f.
tungsten carbide, 12.1-12.6 : 85	Microstructure of metals, 9.1-9.5 : 10
Mechanical test acceptance criteria, 14.6: 47	Miller number, 12.1-12.6 : 60, 62
instrumentation, 14.6 : 46	and modified abrasivity, 12.1-12.6: 62, 62f.
objective, 14.6 : 46	defined, 12.1-12.6 : 43
operating conditions, 14.6: 46	Miller test, 12.1-12.6 : 60
procedure, 14.6 : 47	Minimum allowable continuous speed $[n_{min all}]$, defined, 1.1
records, 14.6 : 48	1.2 : 68, 2.1-2.2 : 31
setup, 14.6 : 46	Minimum continuous stable flow $[Q_{min\ all\ stable}]$, defined,
temperature instruments, 14.6 : 47	1.1-1.2 : 68, 2.1-2.2 : 30
vibration instruments, 14.6 : 46	Minimum continuous thermal flow [Q _{min thermal}], defined,
Metallic-type piston packing, 8.1-8.5 : 22	1.1-1.2 : 68, 2.1-2.2 : 30
application, 8.1-8.5 : 22	Minimum allowable suction pressure (MASP), defined, 7.8
clearance, 8.1-8.5 : 23	3
joints, 8.1-8.5 : 21f., 23	Minimum carrying velocity, defined, 12.1-12.6 : 38
liquid piston ring pack, 8.1-8.5 : 22f.	Minimum combined efficiency, 11.6 : 6, 14.6 : 12
material, 8.1-8.5 : 23	Minimum flow, 1.3 : 72, 2.3 : 41
maximum temperature for ring materials, 8.1-8.5 : 23t.	operation below BEP, 2.3 : 41
Metals, 12.1-12.6 : 66	Minimum pump efficiency, 11.6: 6, 14.6: 12
Metering pumps, 7.6 : 9	Minimum submergence formed suction intake, 9.8 : 18
acceleration pressure, 7.8 : 6	Minimum working suction pressure (MWSP), defined, 7.8:
accessories, 7.8: 12–16	3
characteristics, 7.8 : 4	Mixed flow pump impeller, 2.1-2.2 : 19
net positive suction head available (NPSHA)/net	Mixed flow pumps, 1.1-1.2 : 10 f., 10
positive inlet pressure available (NPIPA), 7.8 : 4–6	Mixed flow vertical — open line shaft (VS1), 2.1-2.2 : 6 f.

Modal damping, defined, 9.6.8 : 60	vertical mounting, 5.1-5.6 : 31
Mode shape diagram, 9.6.8 : 32f.	Mounting plates, 2.3 : 65, 73
Mode shape, defined, 9.6.8: 61	Multilevel rotordynamic model, defined, 9.6.8: 61
Model tests for pump acceptance, 11.6: 43, 14.6: 66	Multiphase fluids, defined, 3.1-3.5: 23
at increased head, 14.6: 69	Multiple pump test laboratories, 40.7: 14
efficiency scaleup, 14.6: 68	Multiple-screw pumps
pump model test, 14.6: 67	timed screw pumps, 3.1-3.5: 12
scaling formulas, 14.6 : 69	untimed screw pumps, 3.1-3.5 : 12
Modification of pump characteristics when pumping	Multiplex pump, 6.1-6.5 : 3
viscous liquids, 9.6.7 : 3f.	Multiplex pumps, defined, 7.8: 3
Modified abrasivity (Amod), 12.1-12.6 : 62, 62f.	n. See Speed
Molded ring packings, 8.1-8.5 : 19	National Electrical Code, 2.3: 92
Monitoring control system, 9.6.9: 1, 2f.	National Electrical Manufacturers Association (NEMA)),
Monitoring devices, 4.1-4.6 : 19, 24, 9.6.9 : 1, 3f.	1.3 : 161
Monitoring equipment, 9.6.9 : 4	contact information, 2.1-2.2: 83
Monitoring equipment, defined, 5.1-5.6 : 19	motor classifications, 2.3: 89
Monitoring frequency, 9.6.9 : 4, 5t.	Standard MG1, 2.1-2.2: 83, 84
Monitoring interval, 9.6.9 : 4	torque-speed curves for AC motors, 2.3: 89 f.
Monitoring, 9.6.9 : 27	torque-speed curves for Design A-D motors, 2.3: 89 f
Monitoring, defined, 9.6.5 : 55	National Electrical Manufacturers Association (NEMA)
Motor and Motion Association (SMMA) contact	Type C face-mounted motors
information, 4.1-4.6 : 26	dimensions for type JM, alternating current, face-
Motor efficiency (ηmot), defined, 3.6 : 7	mounting, close-coupled pump motors, 2.1-2.2: 84
Motor insulation, defined, 5.1-5.6 : 16	85 t., 86 f.
Motor mounting, 2.3 : 27	dimensions for type JP, alternating current, face-
Motor power. See Total input power	mounting, close-coupled pump motors, 2.1-2.2: 84
Motor reed critical frequency impact test guidelines, 9.6.8 :	86 f., 87 t.
80	open drip-proof frame selections, 2.1-2.2 : 84, 88 t.
Motor winding integrity test objective, 5.1-5.6 : 50	standard dimensions for HI-NEMA type HP and HPH
test parameters, 5.1-5.6 : 50	vertical solid-shaft motors, 2.1-2.2: 84, 89 t., 90 f.
Motor winding temperature rise test acceptance, 5.1-5.6 :	TEFC frame selections, 2.1-2.2 : 84
53	Natural frequencies, 2.3 : 26
objective, 5.1-5.6 : 51	for electric motors, 2.3 : 91
test parameters, 5.1-5.6 : 51	Natural frequencies, defined, 9.6.8 : 27
test procedure, 5.1-5.6 : 51	Natural frequency versus static deflection, 9.6.8 : 37f.
Motor winding, temperature monitoring, 9.6.5 : 6	Natural frequency, defined, 9.6.8: 61
Motor/driver interface	Natural rubber, 12.1-12.6 : 67–68
anti-reverse rotation devices, 2.3: 27	Negative thrust, defined, 4.1-4.6 : 10
bolted couplings, 2.3 : 29	NEMA Design B motors, 9.6.9 : 14
bottom bushings, 2.3: 29	NEMA. See National Electrical Manufacturers Association
couplings, 2.3 : 29, 30 f., 31 f.	Neodymium iron boron magnet, defined, 5.1-5.6 : 17
head shaft coupling, 2.3 : 29 f., 29	Neodymium, defined, 4.1-4.6 : 10
hollow-shaft drivers, 2.3 : 28 f., 28, 29 f.	Net positive inlet pressure available (NPIPA), 7.8 : 4–6,
pump-to-driver shafting, 2.3 : 28, 28 f.	6.1-6.5 : 31, 9.6.9 : 7
self-release couplings, 2.3 : 29	Net positive inlet pressure available (NPIPA), defined, 3.1
solid-shaft drivers, 2.3: 28 f., 28	3.5 : 21, 6.6 : 6
thrust bearings, 2.3 : 27	Net positive inlet pressure available (NPIPA), definition
vertical pump motor mounting, 2.3: 27	and equation, 3.6 : 6
Motors, 9.6.9 : 14	Net positive inlet pressure required (NPIPR), 3.6 : 19
Motors. See Electric motors	defined, 3.1-3.5 : 22, 3.6 : 6, 6.6 : 7, 7.6 : 7
Mounting of pumps	Net positive inlet pressure required test, 3.6 : 18, 19, 20
for close-coupled configurations, 5.1-5.6 : 31	acceptable deviation of test quantities, 3.6 : 19
for magnetic drive designs using flexible shaft	data presentation, 3.6 : 20
couplings, 5.1-5.6 : 31	procedure, 3.6 : 19
horizontal mounting base (CMP), 5.1-5.6 : 31	test equipment, 3.6 : 18
mounting base (MDP), 5.1-5.6 : 31	Net positive inlet pressure required, 6.1-6.5 : 31
submerged mounting (CMP), 5.1-5.6 : 31	Net positive inlet pressure required, 8.1-8.5 : 11

```
Net positive suction head (NPSH), 1.3: 72), 7.8: 11
                                                                 nickel (95% minimum nickel), 9.1-9.5: 20
   and hot water pumps used in generation of electric
                                                                 nickel-chromium-iron, 9.1-9.5: 20
                                                                 nickel-copper (Monel types), 9.1-9.5: 21
      power, 1.3: 74
   insufficient. 1.3: 72
                                                                 nickel-molybdenum. 9.1-9.5: 20
   margin considerations, 1.3: 73
                                                                 nickel-molybdenum-chromium, 9.1-9.5: 20
   requirements for pumps handling hydrocarbon liquids
                                                             Nitrile. 12.1-12.6: 68
      and water at elevated temperatures, 1.3: 73, 76f.,
                                                             Nitrogen (in water). 2.3: 79
                                                             Noise level. 1.3: 92
      77f.
   vs. rate of flow (change in system dynamic
                                                                 airborne, 3.1-3.5: 49
                                                                 applications requiring minimum noise, 1.3: 92
      component), 9.6.1: 15f.
   vs. rate of flow (change in system static component),
                                                                 barrel pumps (double case) for reduction. 1.3: 94
                                                                 combined noise level of pump and driver, 1.3: 92, 93f.
      9.6.1: 16f.
Net positive suction head (NPSH) margin, 2.3: 46
                                                                 correction factors, 1.3: 93, 93t., 94f.
                                                                 estimating sound levels (L_{pa}), 1.3: 92
Net positive suction head (NPSH) test with flow rate held
                                                                 fluidborne, 3.1-3.5: 48
      constant, 11.6: 28f.
   procedure, 11.6: 28f.
                                                                 impeller trim and lower levels, 1.3: 94, 94f.
   with inlet head held constant, 11.6: 28f.
                                                                 multistage pumps and lower levels, 1.3: 93, 93t.
Net positive suction head (NPSHR) test, 11.6: 4, 24
                                                                 noise cladding or enclosure, 1.3: 94
    inlet throttling test setup, 11.6: 25, 25f.
                                                                 power cut-off and lower levels, 1.3: 94
   acceptance criteria, 11.6: 29
                                                             Nomenclature, 4.1-4.6: 6 t., 8.1-8.5: 2
   closed-loop, dry-pit test setup, 11.6: 26, 26 f.
                                                                 See also Terminology
                                                             Nomenclature, standardization of, 50.7: 2
   closed-loop, wet-pit test setup, 11.6: 26, 27f.
   with flow rate held constant, 11.6: 27
                                                             Nonhomogeneous flow (partially suspended solids),
   with inlet head held constant, 11.6: 27
                                                                    defined, 12.1-12.6: 40
Net positive suction head available (NPSHA)
                                                             Nonhomogeneous flow, 6.1-6.5: 35
   and datum elevation for various pump designs at eve
                                                             Non-Newtonian fluid, defined, 3.1-3.5: 39
      of first-stage impeller, 9.6.1: 1, 2f.
                                                             Nonpusher seals, defined, 12.1-12.6: 37
   and increased pipe roughness, 9.6.1: 15
                                                             Nonpusher split seals, 12.1-12.6: 82, 83f.
   and NPSH margin), 1.3: 72, 2.3: 46, 6.1-6.5: 31, 8.1-
                                                             Nonsettling slurries, defined, 12.1-12.6: 40, 45
      8.5: 12. 7.8: 4–6. 9.6.1: 1. 2
                                                             Nonsettling slurry. 6.1-6.5: 35
   and petroleum process pumps, 1.3: 73
                                                             Nonsynchronous, defined, 9.6.8: 61
   as 3% head drop (manufacturers' recommendations),
                                                             Normal condition point (n), defined, 1.1-1.2: 70, 2.1-2.2:
                                                                    34, 6.6: 2, 12.1-12.6: 35
   corrections for temperature and elevation, 1.3: 72, 2.3:
                                                             Normal maximum power, 9.6.9: 7
                                                             Normal minimum power, 9.6.9: 7
                                                             Normative content, 9.6.9: 27, 50.7: 4
   defined, 1.1-1.2: 71, 2.1-2.2: 35, 6.6: 6, 9.6.1: 2,
      11.6: 10, 12.1-12.6: 36
                                                             Normative, defined, 9.6.5: 55
   formulas, 2.3: 43, 9.6.1: 1
                                                             Nozzle loading, 2.3: 26
   maximum speed due to (formula), 9.6.1: 17
                                                             Nozzle loads, 12.1-12.6: 86
   reduction with time, 9.6.1: 15-16, 15f., 16f.
                                                                 allowable sideways slide force per bolt, 12.1-12.6: 88
Net positive suction head datum, defined, 11.6: 7, 8f.
                                                                 allowable, based on hold-down capability criterion,
Net positive suction head required (NPSHR) (NPSH3)),
                                                                    12.1-12.6: 87
      1.3: 74, 6.1-6.5: 31, 8.1-8.5: 11, 7.8: 4, 9.6.1: 1,
                                                                 and driver and pump, 12.1-12.6: 86
                                                                 and pump hold-down bolts, 12.1-12.6: 87
      9.6.7: 20
   and operation above BEP, 2.3: 41
                                                                 and sliding forces and moments, 12.1-12.6: 88, 88f.,
   and operation below BEP, 2.3: 41
                                                                    89f., 91f.
   chart and liquids other than hydrocarbons or water,
                                                                 assumed effect of, 12.1-12.6: 87
      1.3: 75, 76f., 77f.
                                                                 bolts in tension, 12.1-12.6: 91f., 90t.
   chart instructions, 1.3: 75, 76f., 77f.
                                                                 calculating allowable forces on hold-down bolts, 12.1-
   chart limitations, 1.3: 74
                                                                    12.6: 90
   defined, 1.1-1.2: 71, 2.1-2.2: 35, 6.6: 7, 7.6: 7, 11.6:
                                                                 extension procedure, 12.1-12.6: 91
      10, 12.1-12.6: 36
                                                                 limiting factors, 12.1-12.6: 86
   in runout condition. 2.3: 41
                                                                 metric units. 12.1-12.6: 104t.
   reduction for pumps handling hydrocarbon liquids and
                                                                 orientations, 12.1-12.6: 86f.
      high-temperature water, 2.3: 47, 48 f., 49 f.
                                                                 precalculated values, 12.1-12.6: 91, 104t., 105t.
Newtonian fluid, defined, 3.1-3.5: 38
                                                                 US customary units, 12.1-12.6: 105t.
Nickel and nickel alloys miscellaneous types, 9.1-9.5: 21
                                                             NPIPA. See Net positive inlet pressure available
```

NPIPR. See Net positive inlet pressure required	14.6 : 21, 22 t.
NPSH datum plane, 1.1-1.2 : 69, 2.1-2.2 : 32, 9.6.1 : 1	Type II: determination of NPSH3 for single flow rate,
NPSH margin ratio (NPSHA divided by NPSH3), 9.6.1 : 2	14.6 : 21, 22 t.
NPSH margin, 9.6.1 : 2	Type III: verification of limited influence of cavitation on
and 3% head drop, 9.6.1 : 2	performance at specified NPSHA, 14.6: 21
and best efficiency point (BEP), 9.6.1: 4, 4f.	Type IV: verification of guaranteed characteristics at
and building services (HVAC), 9.6.1: 12	specified NPSHA, 14.6 : 21
and cavitation in centrifugal pumps, 9.6.1: 14	NPSH tests, arrangements for, 14.6 : 49
and chemical process pumps, 9.6.1 : 9	air content in closed loops with suction pressure below
and circulating/cooling water pumps, 9.6.1: 10	atmospheric, 14.6 : 50
and condensate pumps, 9.6.1 : 10	air content in open loops, 14.6: 50, 50 f.
and duty cycle, 9.6.1 : 6	allowable air content, 14.6: 49
and electric power plant (non-nuclear) pumps, 9.6.1 :	characteristics of the circuit, 14.6: 49
9–10, 10t.	characteristics of the test liquid, 14.6: 49
and general industrial pumping applications, 9.6.1: 14	closed-loop, 14.6 : 51, 52 f.
and greater suction head, 9.6.1: 7	determination of vapor pressure, 14.6 : 50
and hot water, 9.6.1 : 9	example arrangements, 14.6 : 51, 52 f.
and impeller vane overlap, 9.6.1 : 5, 5f.	open sump with level control, 14.6 : 51, 53 f.
and inlet tip speed, 9.6.1 : 4	open sump with throttle valve, 14.6 : 51, 53 f.
and larger impeller eye, 9.6.1 : 4	NPSH. See Net positive suction head (NPSH)
and materials, 9.6.1 : 6	NPSH3 correction factor, 9.6.7 : 22
and NPSH3 reduction (hydrocarbon correction factor),	NPSH3 defined, 2.1-2.2 : 35, 9.6.1 : 2, 9.6.7 : 21
9.6.1 : 8	determined by variable flow rate test, 9.6.1 : 2, 3f.
and nuclear power plant pumps, 9.6.1 : 10	determined for constant flow rate, 9.6.1 : 2, 3f.
and oil and gas industry pumping applications, 9.6.1:	effect of viscosity on, 9.6.7 : 21
13	increase due to cavitation erosion, 9.6.1 : 16
and oil and gas pipeline pumps, 9.6.1 : 13	NPSHA value required, 11.6 : 28
and operating range, 9.6.1 : 6	objective of NPSH tests, 11.6 : 25
and petroleum (hydrocarbon) process pumps, 9.6.1 :	procedure, 11.6 : 27
8–9	records, 11.6 : 29
and poor suction conditions, 9.6.1 : 7	setup, 11.6 : 25, 25f., 26 f., 27f.
and pulp and paper stock pumps, 9.6.1 : 11	vapor pressure, 11.6 : 29
and pump size, 9.6.1 : 5	variable-lift test setup, 11.6 : 25, 26 f.
and pumpage effects, 9.6.1 : 5	with variable flow rate and variable inlet pressure,
and recommended maximum operating speeds, 9.6.1 :	11.6 : 27, 28 f.
17, 18f.	NPSHA. See Net positive suction head available
and resistance to cavitation damage, 9.6.1 : 10	NPSHR test
and slurry pumps, 9.6.1 : 12–13	aeration of water, 6.6 : 16
and suction specific speed, 9.6.1 : 4–5, 7, 17	arrangements, 6.6 : 15
and variable flows, 9.6.1: 11	correction to rated speed, 6.6 : 16
and water injection pumps, 9.6.1 : 13	data presentation, 6.6 : 17
and water/wastewater pumps, 9.6.1 : 10–11, 11t.	equipment, 6.6 : 15
conservative suction specific speed to ensure	liquid, 6.6 : 16
adequate margin, 9.6.1 : 17–18	objective, 6.6 : 14
defined, 9.6.1 : 1	procedure, 6.6 : 16
dependence on accurate NPSH3 and NPSHA, 9.6.1 :	results, 6.6 : 17f.
7	tolerance of test parameters, 6.6 : 17
determination of, 9.6.1 : 6–7	NPSHR. See Net positive suction head required
extra, situations calling for, 9.6.1 : 7	N _{ss} . See Suction specific speed
factors considered in establishing, 9.6.1 : 3	Nuclear power plant pumps, 9.6.1 : 10
formula (NPSHA – NPSH3), 9.6.1 : 2	Numerical applyais recommendations 9.6.8 : 04
greater, as not detrimental, but possibly not desirable, 9.6.1: 7	Numerical analysis recommendations, 9.6.8 : 94
NPSH reference plane, 9.6.1 : 1	Numerical analysis, defined, 9.6.8 : 61 Nutating disc meters, 9.6.9 : 13
NPSH tests objective, 14.6 : 20	Objective of standard, 5.1-5.6 : 1
tolerance factor for NPSHR, 14.6 : 21	Octave-band analyzer, 3.1-3.5 : 49
Type I: determination of NPSH3 for multiple flow rates,	Odors (in water), 2.3 : 79
. , po i. dotomination of the orio for mattiple now fates,	

Oersted, defined, 4.1-4.6 : 11	standard, 4.1-4.6 : 23
Off-design rating procedures, 4.1-4.6 : 17	startup procedure, 5.1-5.6 : 41
Offgassing liquids and system performance, 7.8 : 11	start-up, 3.1-3.5 : 64
Ogee spillway transition, 9.8: 35	vibration, 5.1-5.6 : 42
OH or BB pump baseplate natural frequency analysis	Operation and maintenance, 8.1-8.5 : 15
(modal FEA), 9.6.8 : 51	Operational considerations, 12.1-12.6 : 96
analysis, 9.6.8 : 52	Operational problems, 12.1-12.6 : 93–94
interpretation of results, 9.6.8 : 52	and low supply flow rates, 12.1-12.6 : 94
methodology, 9.6.8 : 51	and pump load on driver, 12.1-12.6 : 93
model, 9.6.8 : 51	information to provide to pump supplier, 12.1-12.6 : 94
validation, 9.6.8 : 52	Optimum normally attainable efficiency chart (metric units
OH or BB pump shaft-end deflection analysis (static	20.3 : 6 f.
structural FEA), 9.6.8 : 51	Optimum normally attainable efficiency chart (US
analysis, 9.6.8 : 51	customary units), 20.3 : 8 f.
•	Optional tests, 14.6 : 44
methodology, 9.6.8 : 51	
model, 9.6.8 : 51	bandwidth of manufacturing tolerances, 14.6 : 44
validation, 9.6.8: 51	bandwidth of measuring tolerances, 14.6 : 44
OH00-OH12. See Pump type OH00-Pump type OH12	cost considerations, 14.6 : 44
Oil and gas industry pumping applications, 9.6.1 : 13	critical service or application, defined, 14.6 : 45
pipeline pumps, 9.6.1 : 13	definitions, 14.6 : 45
water injection pumps, 9.6.1 : 13	new/unique design, defined, 14.6 : 45
Open bottom can intakes, 9.8 : 26, 27f.	standard pumps, defined, 14.6 : 45
Open line-shaft pumps, 2.3 : 16, 17 f., 18 f.	test specification matrix, 14.6 : 45, 45 t.
bearing bushings, 2.3: 16	Orifices, 9.6.9 : 13
bearing lubrication, 2.3 : 19	in rate-of-flow monitoring, 9.6.5 : 19
bearing spacing, 2.3 : 19	OSHA requirements, 3.1-3.5 : 49
Open sumps, 9.8 : 57	Other metals and coating systems ceramic, 9.1-9.5 : 23
Open trench-type wet-well	chromium coatings, 9.1-9.5 : 23
hydraulic jump, 9.8 : 81, 82f.	cobalt alloys, 9.1-9.5 : 22
inlet baffle, 9.8 : 82, 82f.	cobalt-chromium-tungsten alloy, 9.1-9.5: 23
Open/enclosed line shaft, 2.1-2.2 : 15	flame-sprayed carbide or oxide, 9.1-9.5 : 23
Operating duty point, 1.3 : 66	lead and lead alloys, 9.1-9.5 : 22
continuous, intermittent, and cyclic service, 1.3 : 69	nickel or cobalt-chromium boron alloy, 9.1-9.5 : 23
series and parallel operation, 1.3: 68, 68f., 69f.	tin-base bearing metals, 9.1-9.5 : 22
Operating range, 2.3 : 39, 40 f.	titanium alloys, 9.1-9.5 : 23
and rotative speed limitations, 2.3: 57, 59 f., 60 f.	zinc and zinc alloys, 9.1-9.5 : 22
operation below, and discharge recirculation, 2.3: 41	zirconium, 9.1-9.5 : 23
operation below, and suction recirculation, 2.3: 41	Outer magnet assembly, defined, 5.1-5.6: 18
operation below, and temperature rise, 2.3: 41	Outer magnetic assembly (driver), defined, 4.1-4.6 : 11
Operating speeds, recommended maximum, 9.6.1 : 17,	Outlet (discharge) pressure (p_d) , definition and equation,
18f.	3.1-3.5 : 20, 3.6 : 5
Operation, 3.1-3.5 : 63	Outlet measuring section, 40.6 : 15
and air entrainment, 4.1-4.6 : 23	Outlet pressure tapping, 40.6 : 16 f.
and air in containment shell, 4.1-4.6 : 24	horizontal, 40.6 : 16 f.
and demagnetization, 4.1-4.6 : 25	vertical, 40.6 : 16 f.
and humidity effects on magnets, 4.1-4.6 : 25	Outlet total head, definition, 40.6 : 15
and internal temperature rise, 4.1-4.6 : 24	Outlet, defined, 3.1-3.5 : 16
and pump monitoring devices, 4.1-4.6 : 24	Outside-adjustable lost-motion valve, 8.1-8.5 : 7f.
and temperature limits of magnets, 4.1-4.6 : 24	Overall efficiency (η_{OA}) , defined, 1.1-1.2 : 72, 2.1-2.2 : 36,
decoupling (MDP), 5.1-5.6 : 42	11.6 : 11, 12.1-12.6 : 37
flow rate, 3.1-3.5 : 65	Overall efficiency (η_{OA}) , definition and formula, 3.6 : 7
leakage, 3.1-3.5 : 65	Overall efficiency, defined, 6.6 : 7
lubrication, 3.1-3.5 : 64	Overhung (OH) type, 1.3 : 1, 32, 32f., 110, 111f.
other precautions, 5.1-5.6 : 42	as self-priming pump, 1.3: 120
prestart-up checklist, 3.1-3.5 : 63	Overhung impeller (defined), 12.1-12.6 : 3
prevention of, without liquid flow, 4.1-4.6 : 23	Overhung impeller pumps icons, 1.1-1.2 : 74 f.–78 f.
shutdown, 3.1-3.5 : 65	Overhung impeller types, 1.1-1.2 : 74

- Overhung impeller, close coupled, high-speed integral gear, single stage pump, **1.1-1.2**: 24 f.
- Overhung impeller, close coupled, single stage, end suction pump, **1.1-1.2**: 25 f.
- Overhung impeller, close coupled, single stage, in-line pump (showing seal and packing), **1.1-1.2**: 22 f.
- Overhung impeller, close coupled, single stage, vertical end suction pump (pump dimensions letter designations), **1.1-1.2**: 59, 64 f.
- Overhung impeller, close coupled, submersible, diffuser, single stage, end suction pump, **1.1-1.2**: 26 f.
- Overhung impeller, close coupled, submersible, volute, single stage, end suction pump, **1.1-1.2**: 27 f.
- Overhung impeller, close coupled, vertical, end suction, single stage, vertically mounted, OH5A pump, **1.1-1.2**: 23 f.
- Overhung impeller, close-coupled, single-stage, end suction, metal, submersible pump with agitator (OH8B), **12.1-12.6**: 19f.
- Overhung impeller, close-coupled, single-stage, submersible, elastomer-coated, single suction pump (OH8B), **12.1-12.6**: 16f.
- Overhung impeller, close-coupled, single-stage, submersible, elastomer-lined, double suction pump (OH8B), **12.1-12.6**: 18f.
- Overhung impeller, close-coupled, single-stage, submersible, elastomer-lined, single suction pump (OH8B), **12.1-12.6**: 17f.
- Overhung impeller, close-coupled, single-stage, submersible, metal, double suction pump (OH8B), **12.1-12.6**: 20f.
- Overhung impeller, flexibly coupled, horizontal, foot mounted, single stage pump, **1.1-1.2**: 15 f.
- Overhung impeller, flexibly coupled, horizontal, foot mounted, single stage, stock pump, **1.1-1.2**: 14 f.
- Overhung impeller, flexibly coupled, single stage, axial flow, horizontal pump, **1.1-1.2**: 28 f.
- Overhung impeller, flexibly coupled, single stage, centerline mounted (top suction) pump dimensions (letter designations), **1.1-1.2**: 59, 61 f.
- Overhung impeller, flexibly coupled, single stage, centerline mounted pump (pump dimensions letter designations), **1.1-1.2**: 59, 60 f.
- Overhung impeller, flexibly coupled, single stage, centerline mounted, API 610 pump, **1.1-1.2**: 18 f.
- Overhung impeller, flexibly coupled, single stage, centerline mounted, pump on baseplate (pump dimensions letter designations), **1.1-1.2**: 59, 60 f.
- Overhung impeller, flexibly coupled, single stage, centerline mounted, pump on baseplate top suction (pump dimensions letter designations), **1.1-1.2**: 59, 61 f.
- Overhung impeller, flexibly coupled, single stage, foot mounted ANSI B73.1 pump, **1.1-1.2**: 16 f. See also ASME/ANSI B73.1
- Overhung impeller, flexibly coupled, single stage, foot mounted, mixed flow pump, **1.1-1.2**: 15 f.

- Overhung impeller, flexibly coupled, single stage, foot mounted, self-priming pump, **1.1-1.2**: 17 f.
- Overhung impeller, flexibly coupled, single stage, frame mounted pump (pump dimensions letter designations), **1.1-1.2**: 59
- Overhung impeller, flexibly coupled, single stage, frame mounted pump on baseplate (pump dimensions letter designations), **1.1-1.2**: 59, 59 f.
- Overhung impeller, flexibly coupled, single stage, frame mounted pump, **1.1-1.2**: 12 f.
- pump dimensions (letter designations), **2.1-2.2**: 59 f. Overhung impeller, flexibly coupled, single stage, frame
- mounted, lined pump, **1.1-1.2**: 13 f.

 Overhung impeller, flexibly coupled, vertical, end suction,
- single stage, integral driver support (dimension letter designations), **1.1-1.2**: 64 f.
- Overhung impeller, flexibly coupled, vertical, end suction, single stage, OH3A pump, **1.1-1.2**: 20 f.
- Overhung impeller, flexibly coupled, vertical, end suction, single stage, separate driver support (dimension letter designations), **1.1-1.2**: 63 f.
- Overhung impeller, flexibly coupled, vertical, in-line, integral bearing frame, single stage pump, **1.1-1.2**: 19 f.
- Overhung impeller, integral bearing frame, single stage, vertical end suction with flexible coupling (pump dimensions letter designations), **1.1-1.2**: 59, 64 f.
- Overhung impeller, rigidly coupled, single stage, vertical in-line pump, **1.1-1.2**: 21 f.
- Overhung impeller, separately coupled, single stage, frame mounted (vertically mounted) pump (pump dimensions letter designations), **1.1-1.2**: 59, 63 f.
- Overhung impeller, separately coupled, single-stage, frame-mounted, elastomer-lined pump (OH0), **12.1-12.6**: 6f.
- Overhung impeller, separately coupled, single-stage, frame-mounted, elastomer-lined pump, adjustable sideliners (OH0), **12.1-12.6**: 7f.
- Overhung impeller, separately coupled, single-stage, frame-mounted, end suction, metal, tie bolt plate construction pump (OH0), **12.1-12.6**: 11f.
- Overhung impeller, separately coupled, single-stage, frame-mounted, end suction, metal, unlined casing pump (OH0), **12.1-12.6**: 9f.
- Overhung impeller, separately coupled, single-stage, frame-mounted, end suction, vulcanized- elastomer-lined pump (OH0), **12.1-12.6**: 8f.
- Overhung impeller, separately coupled, single-stage, frame-mounted, metal-lined pump (OH0), **12.1-12.6**:
- Overhung impeller, separately coupled, single-stage, frame-mounted, side inlet, metal, unlined casing pump (OH0), **12.1-12.6**: 10f.
- Overhung impeller, separately coupled, single-stage, wet pit cantilever, elastomer, vulcanized-lined, double suction pump (VS5), **12.1-12.6**: 14f.
- Overhung impeller, separately coupled, single-stage, wet

pit cantilever, elastomer-lined, single suction pump (VS5), 12.1-12.6 : 13f.	installation, 8.1-8.5 : 18 joints, 8.1-8.5 : 21f.
Overhung impeller, separately coupled, single-stage, wet	leakage, 12.1-12.6 : 73–74
pit cantilever, unlined, metal, single suction pump	lubrication, 8.1-8.5 : 20
(VS5), 12.1-12.6 : 15f.	materials, 12.1-12.6 : 74
Overhung pump, defined, 9.6.8 : 27	molded ring, 8.1-8.5 : 19
Overhung pumps	soaking, 8.1-8.5 : 20
back pull-out assembly, defined, 2.1-2.2 : 42, 43 f.	swelling, 8.1-8.5 : 22
bare rotor, defined, 2.1-2.2 : 43	weep-type arrangement, 12.1-12.6 : 72, 72f., 73f., 74
liquid end (wet end) assembly, defined, 2.1-2.2 : 41, 41	Parallel operation, 2.3 : 39, 40 f.
f.	Parameter B, 9.6.7 : 4
power end (frame assembly), defined, 2.1-2.2 : 42, 42 f.	
rotating assembly, defined, 2.1-2.2 : 43	Parameters, 9.6.9 : 27
terms, 2.1-2.2 : 41	Parametric study, defined, 9.6.8 : 61
Overhung, flexibly coupled pumps, 1.1-1.2 : 2 f., 5	Parasitic losses, defined, 5.1-5.6 : 15
Overhung, open impeller, separately coupled, single-	Part name listing (alphabetical) , 1.1-1.2 : 47 t., 2.1-2.2 : 21
stage, foot-mounted, metal, ASME B73.1 type pump	t., 12.1-12.6 : 21t.–25t.
(OH1), 12.1-12.6 : 12f.	Part names, 12.1-12.6 : 4
Overhung, rigidly coupled pumps, 1.1-1.2 : 2 f., 5	numerical listing, 12.1-12.6 : 26t.–27t.
Overhung, short coupled pumps, 1.1-1.2 : 2 f., 5	Part numbers, 1.1-1.2 : 56 t.
Overview and relevance of dynamics considerations,	Participant criteria, 40.7 : 2
9.6.8 : 7	through purchase or acquisition, 40.7 : 3
Overview, 50.7 : 3	Participant, defined, 40.7 : 1
P. See Power	Particle counting, in lubricant analysis, 9.6.5 : 16, 18
p. See Pressure	Particle impact, 12.1-12.6 : 58, 59, 60
p_a . See Absolute pressure. Packing, defined, 3.1-3.5 : 17	erosion rates for different materials and impact angles,
\underline{p}_{acc} . See Acceleration pressure	12.1-12.6 : 60, 60f.
Pacemakers, caution regarding, 4.1-4.6 : 21	Particles, 4.1-4.6 : 16
Packed stuffing boxes, 2.3 : 24	Parts listing and cross-sectional drawings section, 2.4 : 43
for low to intermediate pressure service, 2.3 : 24, 25 f.	Parts names and definitions, 5.1-5.6 : 11t.
losses due to viscosity, 2.3 : 51	PAT. See Pump as turbine
with water injection, 2.3 : 24, 25 f.	p _b . See Barometric pressure
Packing, 12.1-12.6 : 71	p _d . See Discharge pressure
allowance for expansion, 8.1-8.5 : 19	See also Outlet (discharge) pressure
and water quality, 12.1-12.6 : 84, 84t.	See also Total discharge pressure
API Plan 02, 12.1-12.6 : 84	Pedestal, driver, 2.3 : 65, 74
API Plan 11, 12.1-12.6 : 84	Percent accumulation. See Percent overpressure
API Plan 32, 12.1-12.6 : 84	Percent overpressure, defined, 3.1-3.5 : 17
API Plan 52, 12.1-12.6 : 84	Percent regulation. See Percent overpressure
API Plan 53, 12.1-12.6 : 84	Percent solids by volume, 6.1-6.5 : 35
API Plan 54, 12.1-12.6 : 84	Percent solids by weight, 6.1-6.5 : 35
API Plan 62, 12.1-12.6 : 85	Performance and selection criteria, 1.3 : 66
basis of recommendations, 8.1-8.5 : 20	efficiency prediction method, 1.3 : 81
canvas, 8.1-8.5 : 20	impeller trimming, 1.3: 71, 71f.
chemical, 8.1-8.5 : 20	intake design, 1.3: 83
clearance, 8.1-8.5 : 22	liquid temperature rise, 1.3 : 78
compression-type, 12.1-12.6 : 71–73, 72f., 73f.	minimum flow, 1.3 : 72
cup-type, 8.1-8.5 : 25f.	net positive suction head (NPSH), 1.3: 72
drip, 8.1-8.5 : 19	net positive suction head available (NPSHA), 1.3: 72
dry-type packing, 12.1-12.6 : 73, 74, 75f.	operating duty point, 1.3 : 66
fitting, 8.1-8.5 : 20, 21f.	operation away from BEP, 1.3: 71
flow-through flush, 12.1-12.6: 72, 73f.	pump liquid temperature limits on end suction pumps,
flush arrangements, 12.1-12.6 : 84–85	1.3 : 83, 84t.
flush-type arrangement, 12.1-12.6: 71, 72f., 74	pump performance after impeller diameter change,
gland adjustment, 8.1-8.5 : 19	1.3 : 69, 70f., 71f.
hydraulic packing, 8.1-8.5 : 20, 21f.	pump performance curve vs. system curve, 1.3: 67,
installation, 12.1-12.6 : 73	67f.

Performance and selection criteria — Continued	calculation of pump (mechanical) efficiency, 6.6 : 13
reverse runaway speed, 1.3 : 82	calculation of total differential pressure, 6.6 : 12
shutdown, 1.3 : 82	calculations of inlet or suction pressure, 6.6 : 12
startup, 1.3 : 81	data needed prior to test run, 6.6 : 10
suction performance, 1.3 : 78	data readings, 11.6 : 14
system pressure limitation, 1.3: 71	default acceptance grade, 11.6: 19t.
torque vs. speed curves, 1.3 : 83, 86f., 87f., 89f., 91f.	default test acceptance grades for pump application,
variable speed curve, 1.3 : 68, 68f.	11.6 : 17
viscous liquid effects, 1.3 : 81	dry-pit performance test setup (alternate arrangement)
water hammer (hydraulic shock), 1.3 : 82	11.6 : 15
Performance calculations (change in pump impeller	dry-pit performance test setup (sample), 11.6 : 12, 14f.
diameter)	evaluation of efficiency or power, 11.6 : 17, 18f.
change in power, 11.6 : 51	evaluation of flow and head, 11.6: 17
change in rate of flow, 11.6: 50	grade 1B, 11.6 : 15, 15 t.
change in total head, 11.6 : 51	grade 1E, 11.6 : 15, 15 t.
Performance calculations (change in pump speed)	grade 1U, 11.6 : 15, 15t.
change in NPSHR, 11.6 : 50	grade 2B, 11.6 : 15, 15 t.
change in power, 11.6 : 50	grade 2U, 11.6 : 15, 15t.
change in rate of flow, 11.6: 49	grade 3B, 11.6 : 15, 15 t.
change in total head, 11.6 : 50	guarantee point (rated point, duty point), 11.6 : 11, 15
Performance chart example, single-stage pump (metric	guarantee point and measured pump curve, 11.6 : 15,
units), 9.6.7 : 12f.	15t., 16 f.
Performance chart example, single-stage pump (US	guarantee rate of flow (Q _G), 11.6 : 15
customary units), 9.6.7 : 15f.	guarantee total head (H_g) , 11.6 : 15
Performance curve, 40.6 : 12	inlet submergence wet-pit test, 11.6 : 12, 13f.
Performance derating	instrument accuracy, 6.6 : 9
based on solids size and content, 12.1-12.6: 52-53,	instrumentation calibration, 6.6 : 8
52f.	instrumentation, 6.6 : 8
based on viscosity, 12.1-12.6 : 51–52	line voltage, 11.6 : 14
Performance enhancements, for trench-type wet wells,	maximum pump input power (P_G), 11.6 : 15
9.8 : 81	minimum pump efficiency (h_G) , 11.6 : 15
bare trenches performance, 9.8: 81, 82f.	NPSHA exceeding NPSHR, 11.6 : 12
enhancements choice, 9.8 : 85	open or closed tank, 6.6 : 9f.
fillets, 9.8 : 85	performance correction for viscosity, 6.6 : 13
floor cones, 9.8 : 83, 83f.	performance correction to rated speed, 6.6 : 13
flow splitters, 9.8 : 84–85, 84f.	performance curve, 11.6 : 20
inlet baffles, 9.8 : 82	piping arrangement, 11.6 : 14
last pump, 9.8 : 85	plotting performance test results, 6.6 : 13
maintaining cleaning velocity, 9.8: 85	plotting test results, 6.6 : 13f.
omission of enhancements, 9.8: 86	procedure, 6.6 : 10, 11.6 : 14
ramps, 9.8 : 85	records and reports, 6.6 : 12, 11.6 : 19
suction bell vanes, 9.8 : 82, 83f.	reduced impeller diameters, determination of, 11.6 : 20
Performance example calculations (metric units), 9.6.7 :	reduction of impeller diameter, 11.6: 20
12t.	report, 6.6 : 13
Performance example calculations (US customary units),	requirements, 11.6 : 19
9.6.7 : 14t.	results, presenting, 11.6 : 20, 20 f.
Performance test, 6.6 : 8, 11.6 : 4, 11	sample data sheet, 6.6 : 10, 11f.
acceptable fluctuation of test readings, 6.6 : 9	setup, 6.6 : 9
acceptance criteria, 11.6 : 15	test points, 11.6 : 14
acceptance grade, default, 11.6: 15	test setup, 11.6 : 12, 13f., 14 f.
acceptance grades, 11.6 : 11, 15, 15t.	Type I, 6.6 : 8
acceptance values, 6.6: 8	Type II, 6.6 : 8
acceptance, 6.6 : 8	Type III, 6.6 : 8
calculation of input power, 6.6 : 12	wet-pit performance test setup (sample), 11.6: 12, 13f.
calculation of outlet or discharge pressure, 6.6 : 12	witnessing, 6.6 : 8
calculation of output power (water horsepower), 6.6 :	Performance testing, 7.6 : 1
13	acceptance tolerance, 7.6 : 7

Performance testing — Continued	point selection, 14.6: 20
setup, 7.6 : 8	power evaluation, 14.6 : 15, 17 f.
test conditions, 7.6 : 3	procedure submittals, 14.6 : 19
types of tests, 7.6 : 3	procedures, 14.6 : 19
variations in test procedures, 7.6 : 1	records and reports, 14.6 : 19
vibration and acoustical testing methods not included,	retesting after reducing impeller diameter, 14.6: 24
7.6 : 1	See also Test tolerances, reasons for
witnessing, 7.6 : 7	site tests, 14.6 : 19
Performance tests	speed of rotation during, 14.6 : 20
acceptable deviation of dependent test quantities from	test conditions, 14.6 : 20
specified values for Type III and Type IV testing, 3.6: 8	testing equipment (documentation and calibration), 14.6: 19
acceptable deviation of independent test quantities	tolerance field for acceptance grade 1E, 14.6 : 15, 17 f.
from specified values at the test parameters, 3.6 : 8	tolerance field for acceptance grades 1B, 2B, and 3B,
acceptance levels, 3.6 : 8	14.6 : 15, 17 t.
acceptance, 3.6 : 8	tolerance field for acceptance grades 1U and 2U, 14.6:
and inlet conditions, 3.6 : 10	17 f.
and liquid temperature, viscosity, and specific gravity,	tolerances for pumps with input power of 10 kW (13
3.6 : 11	hp) and below, 14.6 : 15
and outlet pressure, 3.6: 10	translation of test results into data based on specified
and speed, 3.6 : 11	speed of rotation and density, 14.6 : 21
calculations, 3.6: 13	translation of test results to guarantee conditions, 14.6:
conditions, 3.6: 10	21
correction to power (calculation), 3.6: 14	unilateral tolerance acceptance, 14.6: 15, 16 f.
correction to rate of flow (calculation), 3.6: 14	Performance tests, arrangements for, 14.6 : 19, 25
correction to specified speed (calculations), 3.6 : 14, 15 f.	bowl assembly total head (submerged conditions), 14.6 : 32
differential pressure calculation, 3.6: 13	bowl head (submerged conditions), 14.6: 32
fluctuation and accuracy, 3.6 : 9	correction of suction pressure for suction recirculation,
input power calculation, 3.6 : 13	14.6 : 26, 29 f.
instrument calibration intervals, 3.6 : 25, 26 t.	error in measurement of $H(Q)$ depending on distance
instrumentation, 3.6 : 8	of suction pressure gauge from impeller, 14.6 : 26,
output power calculation, 3.6 : 13	28 f.
performance at constant pressure, 3.6 : 15 f., 16	flow at suction at part load, 14.6: 28 f.
performance at constant speed, 3.6 : 15 f., 16	flow measuring, best conditions for, 14.6 : 25
presentation of results, 3.6 : 15, 15 f.	for pumping installations under submerged conditions,
procedure, 3.6: 11	14.6 : 32
pump efficiency calculation, 3.6 : 14	for self-priming pumps, 14.6 : 35
records, 3.6 : 12	friction head losses for deep-well pumps (submerged
setup, 3.6 : 9, 10 f.	conditions), 14.6 : 34
tabulation sheet, 3.6 : 11 t.	friction losses at inlet and outlet, 14.6 : 35
Performance tests analysis, 14.6 : 21	head for vertically suspended pumps (submerged
bilateral tolerance acceptance, 14.6 : 15, 16 f.	conditions), 14.6 : 32
date of testing, 14.6 : 19	inlet measuring section, 14.6 : 26
default test acceptance grades, 14.6 : 18, 18 t.	inlet total head (submerged conditions), 14.6 : 32
efficiency evaluation, 14.6 : 15, 17 f.	measurement methods, 14.6 : 26
flow evaluation, 14.6 : 15	measurement principles, 14.6 : 25
flow tolerance, 14.6 : 15, 16 f.	outlet measuring section, 14.6 : 29
grades and tolerances, 14.6 : 14, 14 t.	outlet total head (submerged conditions), 14.6 : 32
head evaluation, 14.6 : 15	pressure readings, correction for height difference in,
head tolerance, 14.6 : 15, 16 f.	14.6: 31
impeller diameter reduction to obtain specified	pressure tap location above liquid level and equal to
characteristics, 14.6 : 23	atmospheric pressure (submerged conditions), 14.6 :
made with NPSHA different from that guaranteed,	34
14.6 : 23 minimum test points, 14.6 : 20	pressure tap location above liquid level and not equal to atmospheric pressure (submerged conditions),
performance curves, 14.6 : 23	14.6 : 34
ponomiano da ves, itio. 20	1 7.0 . 07

Performance tests, arrangements for — <i>Continued</i>	Piping, 12.1-12.6 : 91
pressure tap location below pump intake and U1 is not	accessory equipment, 3.1-3.5 : 62
0 (submerged conditions), 14.6: 34	foot valves, 3.1-3.5 : 62
pressure tapping perpendicular to plane of volute or to	inlet piping, 3.1-3.5 : 61
plane of a bend, 14.6 : 29, 29 f.	nozzle loads, 3.1-3.5 : 61
pressure tappings, 14.6 : 29 f., 30, 30 f.	outlet piping, 3.1-3.5 : 61
pump total head (submerged conditions), 14.6: 32	pipe-to-pump alignment, 3.1-3.5: 61f.
pump total head, 14.6 : 25, 27 f.	pump jacket piping, 3.1-3.5: 61
pumps tested with fittings, 14.6 : 32	system design, 12.1-12.6: 92-93
simulated test arrangements, 14.6 : 31	Piping - downstream (discharge) multiplex considerations
static pressure tappings, requirements for, 14.6 : 30 f.,	7.8 : 11
30	single pump considerations, 7.8 : 10
Performance tests, reporting results of, 11.6 : 70, 14.6 : 56	Piping – general considerations connections, 7.8 : 7 corrosive effects, 7.8 : 8
data to include, 11.6: 70, 14.6: 56	environmental considerations, 7.8: 7–8
NPSH test requirements, 11.6 : 72, 14.6 : 58	extreme temperature and humidity effects, 7.8: 8
person(s) who perform test, 11.6: 70, 14.6: 56	hydrostatic leak test, 7.8 : 7
person(s) who witness test, 11.6 : 70, 14.6 : 56	materials, 7.8: 6
pump data, 11.6 : 70, 14.6 : 56	pressure ratings, 7.8 : 7
pump test data sheet, 11.6 : 73f.	seismic considerations, 7.8 : 7
sample pump test curve, 11.6 : 71f. , 14.6 : 57 f.	sun protection, 7.8 : 8
sample pump test sheet, 11.6 : 72, 14.6 : 58, 59 f.	support, 7.8 : 6
test condition data, 11.6 : 70, 14.6 : 56	Piping – upstream (suction)
test data, 11.6 : 70, 14.6 : 56	multiplex considerations, 7.8 : 9–10, 9f–10f
test motor data, 11.6 : 70, 14.6 : 56	single pump considerations, 7.8 : 8–9
Peristaltic pumps, 3.1-3.5 : 3t., 4t., 5f., 6f., 14f.	Piston cups, 8.1-8.5 : 25f.
advantages, 3.1-3.5 : 8	assembling, 8.1-8.5 : 25f.
description, 3.1-3.5: 8	composition, 8.1-8.5 : 24
range chart, 3.1-3.5 : 9f.	inspection, 8.1-8.5 : 26
Permeability (magnetic), defined, 4.1-4.6: 11	installation, 8.1-8.5 : 25
Permeance, defined, 4.1-4.6: 11	list of liquids and materials suitable for, 8.1-8.5: 24
Personnel competencies, 40.7: 9	nut tightening, 8.1-8.5 : 26, 26f.
training, 40.7 : 9	synthetic rubber, 8.1-8.5 : 25
Petroleum (hydrocarbon) process pumps, 9.6.1 : 8–9	Piston pumps, 6.1-6.5 : 1f., 1
hydrocarbon correction factor, 9.6.1 : 8	cup-type pistons, 6.1-6.5 : 78–79
p _f . See Friction loss pressure	typical service, 6.1-6.5 : 66–67
p_g . See Gauge pressure	Piston rod load, 6.1-6.5 : 29
Phenolic piston rings, 8.1-8.5 : 23	Piston rod packing drip, 8.1-8.5 : 19
application, 8.1-8.5 : 23	installation, 8.1-8.5 : 18
clearance, 8.1-8.5 : 24	Piston rod packing installation, 6.1-6.5 : 73
forms, 8.1-8.5 : 24	allowance for expansion of packing, 6.1-6.5 : 74
maximum concentration of chemicals, 8.1-8.5: 23t.	chemical packings, 6.1-6.5 : 75
Physical hydraulic model study, 9.8 : 48	drip, 6.1-6.5 : 75
Physical model study, 9.8 : 48	gland adjustment, 6.1-6.5 : 75
acceptance criteria, 9.8: 54	hydraulic piston packing, 6.1-6.5 : 75–76
instrumentation and measuring techniques, 9.8: 51-	lubrication of packing, 6.1-6.5 : 75
53, 52f., 53f.	metallic piston-ring-type packing, 6.1-6.5 : 77
need for, 9.8 : 48	molded ring packings, 6.1-6.5 : 75
objectives, 9.8 : 48–49	phenolic piston ring packing, 6.1-6.5 : 78, 78t.
report preparation, 9.8 : 54	piston packing, 6.1-6.5 : 75–78
scope, 9.8 : 51	Piston type, 8.1-8.5 : 2f., 4
similitude and scale selection, 9.8: 49-51	Piston valves, 8.1-8.5 : 6, 6f.
test plan, 9.8 : 53–54	Pit covers, 2.3 : 66, 74
Pick list fields, 50.7: 12	Pitot pump, flexibly coupled, single stage, frame mounted
Pilot gear. See Timing gear	1.1-1.2 : 37 f.
Pipe dope, 8.1-8.5 : 17	Pitot tube (rotating casing) pump icon, 1.1-1.2 : 81 f.
Pipe tape, 8.1-8.5 : 17	Pitot tube pump, 1.1-1.2 : 37 f.

Pitot tube pumps, 1.1-1.2 : 7, 1.3 : 1, 3f., 131	P _{mot} . See Total input power
bearing housing, 1.3: 132	Polar moment of inertia, defined, 9.6.8: 61
configuration, 1.3 : 136	Pole (N-S), defined, 4.1-4.6 : 11, 5.1-5.6 : 18
cross section, 1.3: 132f.	Poles, defined, 9.6.8 : 61
end bell, 1.3 : 133	Polychloroprene (neoprene), 12.1-12.6: 68
flow considerations, 1.3 : 137	Polymerizing liquids, temperature monitoring of, 9.6.9 : 7
high vapor pressure fluid applications, 1.3: 136	Polyurethane, 12.1-12.6 : 68
hydraulic theory, 1.3 : 134	Popping pressure. See Cracking pressure
maintenance, 1.3: 137	Positive displacement pumps, 9.1-9.5 : 12, 9.6.9 : 6
manifold hydrostatic testing, 1.3 : 136	general designations, 9.1-9.5 : 12
manifold, 1.3 : 133	materials, 9.1-9.5 : 12
mechanical seal, 1.3 : 133, 137	reciprocating, 9.1-9.5 : 13
performance changes, 1.3 : 134	rotary pumps, 9.1-9.5 : 12
performance, 1.3 : 135f.	Positive thrust, defined, 4.1-4.6 : 11
Pitot tube maintenance, 1.3 : 137	Power (P)
Pitot tube, 1.3 : 133	correction to (calculation), 3.6: 14
pump starting, 1.3 : 136	defined, 3.1-3.5 : 22, 3.6 : 7, 11.6 : 10
rotating assembly, 1.3 : 133, 133f.	measurement by dynamometer or torque shaft, 3.6:
rotor and rotor cover maintenance, 1.3: 137	24
rotor assembly hydrostatic testing, 1.3 : 134	measurement by electric meters and transformers, 3.6:
rotor assembly, 1.3 : 132	24
rotor case, 1.3 : 133	measurements, 3.6 : 24
rotor cover, 1.3 : 132	Power curves, 9.6.7 : 20
rotor, 1.3 : 132	Power curves, flat, 9.6.5 : 5
solids handling, 1.3 : 136	Power definitions, 12.1-12.6 : 36–37
terminology, 1.3 : 132	Power drive end, defined, 5.1-5.6 : 18
test standards, 1.3: 134	Power end
Pitot tube, 6.6 : 20	connecting rod, 6.1-6.5 : 21, 21f.
Plan 101, 5.1-5.6 : 26f., 29f.	crankpin bearing, 6.1-6.5 : 22, 22f.
Plan 102, 5.1-5.6 : 29f.	crankshaft, 6.1-6.5 : 19, 19f.
Plan 111, 5.1-5.6 : 26f., 29f.	crosshead extension (plunger extension), 6.1-6.5: 23,
Plan 112, 5.1-5.6 : 26f.	23f.
Plan 113, 5.1-5.6 : 28f.	defined, 1.1-1.2 : 42, 42 f.
Plan 114 – Modified, 5.1-5.6 : 26f.	frame extension, 6.1-6.5 : 24, 24f.
Plan 114, 5.1-5.6 : 26f., 30f.	main bearing, 6.1-6.5 : 21, 21f., 22f.
Plan 115, 5.1-5.6 : 26f.	parts, 6.1-6.5 : 16f.–18f., 19, 20t., 24
Plan 121, 5.1-5.6 : 28f.	power crosshead, 6.1-6.5 : 22, 22f.
Plan 122, 5.1-5.6 : 28f.	power frame, 6.1-6.5 : 19, 19f.
Plan 123, 5.1-5.6 : 29f.	wrist pin bearing, 6.1-6.5 : 23f., 23
Plan 125, 5.1-5.6 : 28f., 30f.	wrist pin, 6.1-6.5 : 23, 23f.
Plan 126, 5.1-5.6 : 30f.	Power input at pump coupling equation, 9.6.7 : 18
Plan 131, 5.1-5.6 : 27f.	Power measurements
Plan 132, 5.1-5.6 : 27f.	calibrated electric motors, 6.6: 22
Plan 133, 5.1-5.6 : 27f.	calibrated laboratory-type electric meters and
Plan 153, 5.1-5.6 : 27f.	transformers, 6.6 : 22
Plastic fluid, defined, 3.1-3.5 : 39, 39f.	calibration of strain gauge torque measuring device,
Plastics, defined, 9.1-9.5 : 24	6.6 : 22
Plotting test results, 7.6 : 13, 14f.	calibration of torsion dynamometer, 6.6: 21
Plunger load, 6.1-6.5 : 29	methods, 6.6 : 21
Plunger or piston speed, 6.1-6.5 : 27	Power meters, 9.6.5 : 5, 9.6.9 : 6
Plunger or piston velocity, 8.1-8.5 : 10	Power monitoring, 9.6.5 : 4, 9.6.9 : 5
Plunger packing installation	alarm limits, 9.6.5 : 6
See also Piston rod packing installation	and flat power curves, 9.6.5 : 5
Plunger packing installation, 8.1-8.5 : 18	and miscellaneous causes of power changes, 9.6.5 : 5
Plunger pumps, 6.1-6.5 : 1, 2f.	and monitoring of operating condition, 9.6.5 : 5
typical service, 6.1-6.5 : 66–67	and power changes, 9.6.9 : 6
Plunger type, 8.1-8.5 : 4	by electrical current, 9.6.5 : 5
○ 	· · · · · · · · · · · · · · · · · · ·

Power monitoring — Continued	by calibrated gauges, 6.6 : 21
by power meter, 9.6.5 : 5	by gauges, 6.6 : 21
by strain gauges, 9.6.5 : 5	by other methods, 6.6 : 21
by torque meter, 9.6.5 : 5	gauge connections, 6.6 : 21f.
condition indicators, 9.6.9 : 23t.	pressure tap location, 6.6 : 20
control limits, 9.6.9 : 6	Pressure monitoring, 9.6.5 : 13, 9.6.9 : 11
frequency, 9.6.9 : 5t., 6	alarm limits, 9.6.5 : 14
instrumentation and systems used for, 9.6.9 : 5	by pressure gauges, 9.6.5 : 13
means of, 9.6.5 : 5	by pressure transducers, 9.6.5 : 13
Power monitors, in bearing wear monitoring, 9.6.5 : 21	condition indicators, 9.6.9 : 26t.
Power pumps, 9.1-9.5 : 13	control limits, 9.6.9: 11
all iron, 9.1-9.5 : 13	differential pressure, 9.6.9 : 12
bronze fitted, 9.1-9.5 : 14	discharge pressure, 9.6.9 : 11
Power, 2.1-2.2 : 36, 6.1-6.5 : 28	frequency, 9.6.9 : 5t., 11
defined, 1.1-1.2 : 72, 6.6 : 7	means of monitoring, 9.6.5 : 13, 9.6.9 : 11
P _p . See Pump input power	reasons for monitoring, 9.6.9 : 11
Practices, 50.7 : 3	shutdown limits, 9.6.5: 14
Process Industry Practices (PIP), 50.7 : 3	suction pressure, 9.6.9 : 11
RESP73 H/V data sheets, 50.7 : 8, 10 f.	Pressure relief valves external, 3.1-3.5 : 63
Precautions, 4.1-4.6 : 12, 9.6.4 : 3	integral, 3.1-3.5 : 63
Preface, 2.1-2.2 : 1	return-to-source, 3.1-3.5 : 63
Preferred measurement units and conversion factors,	Pressure tap location above liquid level and equal to
9.1-9.5 : 1 t.	atmospheric pressure, 40.6 : 18
Preferred operating region (POR), 9.6.3 : 1	above liquid level and not equal to atmospheric
related to specific speed, 9.6.3 : 1, 1t.	pressure, 40.6 : 18
Preinstallation hydrostatic test, 9.6.5 : 54	Pressure tapping, one (minimum requirement), 40.6 : 16 f.
control limits, 9.6.5 : 54	Pressure taps, 40.6 : 15
frequency, 9.6.5 : 54	correction for height difference, 40.6 : 17
means of, 9.6.5 : 54	diameter, 40.6 : 15
Pressure (p), 6.1-6.5 : 27–28, 8.1-8.5 : 10	static, 40.6 : 15
acceleration (p_{acc}) , defined, 7.8 : 3	Pressure transducers, 9.6.9 : 11
defined, 3.1-3.5 : 19, 3.6 : 3, 6.6 : 5	Pressure/safety relief valve, 7.6 : 10
differential, 9.6.9 : 12	Pressure rotaining parts, 14.6 : 38
discharge (p_d) , defined, 7.8 : 3	Pressure-retaining component failure, 9.6.9 : 5
discharge (p_d), 9.6.9 : 11 friction loss (pf), defined, 7.8 : 3	Pre-swirl, 9.8 : 49, 66 Primary containment, defined, 5.1-5.6 : 18
loop manifold connecting pressure taps, 3.6 : 22 f., 23	Priming, 8.1-8.5 : 16
measurement by gauges, 3.6 : 23 f.	Principal symbols, 2.1-2.2 : 28 t.
measurement by means of calibrated gauges, 3.6 : 23,	Procedure, 9.6.4 : 2
23 f.	Process, 9.6.9 : 27
measurement of, 3.6 : 22, 22 f.	defined, 9.6.5 : 55
precautions in measuring, 3.6 : 22	Processing applications, 12.1-12.6 : 45
pressure tap opening with corrosion-related plug, 3.6 :	Product description section, 1.4 : 15, 2.4 : 15
22 f., 22	auxiliaries (driver, shafting, etc.), 1.4 : 15
suction, 9.6.9 : 11	auxiliaries, 2.4 : 16
suction, maximum allowable $(p_{s max})$, defined, 7.8 : 3	configuration, 1.4 : 15, 2.4 : 15
suction, rated suction, defined, 7.8 : 3	identification plate, 1.4 : 15, 15 f.
total system discharge, defined, 7.8 : 4	nameplate information, 1.4 : 15, 2.4 : 16
welded-on pressure tap opening, 3.6 : 22 f., 22	nomenclature, 1.4 : 15, 2.4 : 16
Pressure boundary leakage condition monitoring failure	parts, 1.4 : 15, 2.4 : 16
modes, 9.6.9 : 21t.	pump, 2.4 : 16
Pressure buildup leakage monitoring, 9.6.9 : 10, 10t.	support systems, 1.4 : 15, 2.4 : 1
Pressure decay observation, 4.1-4.6 : 27	Product-lubricated bearings, defined, 5.1-5.6 : 15
Pressure gauge, 7.8 : 13, 9.6.9 : 11	Product-lubricated pumps. See Open line-shaft pumps
Pressure gauges, 7.8 : 12–13	Program eligibility, 40.7 : 2
Pressure gradient factor (K_h) , 1.3 : 30	determination of, 40.7 : 2
Pressure measurement	,

Program guide for HI pump test laboratory approval (normative), 40.7 : 1	rotodynamic vertical pumps, 1.3 : 110 service applications, 1.3 : 113
definitions and nomenclature, 40.7 : 1	vertically suspended (type VS) types and
history, 40.7 : 1	classifications, 1.3 : 110, 112f.
introduction, 40.7: 1	Pump data sheets. See Data sheets
Program Manager defined, 40.7 : 1	Pump data transaction set, 50.7 : 10
program marketing, 40.7 : 14	recommended, extended, and unsupported use, 50.7 :
program overview, 40.7 : 2	18
purpose and scope, 40.7 : 1	Pump data transactions
responsibilities, 40.7 : 2	and equipment life cycle work process, 50.7 : 4, 5f.
Progressing cavity pumps, 1.3 : 124, 3.1-3.5 : 3t., 4t., 5f., 6f.	and information flows, 50.7 : 4, 6f.
Protection against seepage or flood, 8.1-8.5 : 16	key document types, 50.7 : 7 software system types, 50.7 : 6f., 7
Proximity probes	Pump design general, 9.1-9.5 : 7
in shaft position monitoring, 9.6.5 : 19	definition and calculation, 11.6 : 47
in vibration monitoring, 9.6.5 : 15	Pump dimension letter designations, 1.1-1.2 : 59, 63 f.
Proximity sensing devices, in bearing wear monitoring,	Pump displacement, 8.1-8.5 : 9
9.6.5 : 21	defined, 6.6 : 2, 7.6 : 4
$p_{\rm s}$. See Inlet pressure	for double piston pumps with tail rods, 6.6 : 4
See also Suction pressure	for double piston pumps without tail rods, 6.6 : 2
See also Total suction pressure	for single-acting pump, 6.6 : 2
Pseudo-plastic fluid, defined, 3.1-3.5 : 39, 40f.	Pump efficiency (η_p) , 6.1-6.5 : 29, 8.1-8.5 : 12, 11.6 : 45,
Publicity materials and press releases, 40.7 : 14	40.6 : 11
Pulp and paper stock pumps, 9.6.1 : 11	calculation, 3.6 : 14
Pulsating flow, 7.8 : 8, 9f	definition and formula, 1.1-1.2 : 72, 2.1-2.2 : 36, 3.1-3.5
Pulsation dampener, 7.8 : 13, 14f	23, 3.6 : 7, 6.6 : 7, 12.1-12.6 : 37, 40.6 : 11
Pump acceptance tests, 14.6 : 10	equations for determining, 40.6: 11
acceptance grade tolerances, 14.6 : 11	positive displacement versus single-stage
conditions, 14.6 : 11	rotodynamics, 3.1-3.5 : 43f.
guarantees, 14.6 : 11	Pump efficiency testing, 40.6 : 6
maximum permissible measurement device	general, 40.6 : 7
uncertainty, 11.6 : 36 t.	maximum permissible measurement device
maximum permissible measurement device	uncertainty (systematic), 40.6 : 7
uncertainty, 14.6 : 13 t. measurement uncertainty, 14.6 : 12	maximum permissible measurement device uncertainty, 40.6 : 8 t.
overall measurement uncertainty, 14.6 : 13	measurement uncertainty, 40.6 : 7
permissible amplitude of fluctuations per grade, 11.6 :	permissible amplitude of fluctuation, 40.6 : 7 t.
35 t.	permissible fluctuations (random fluctuations), 40.6 : 7
permissible amplitude of fluctuations per grade, 14.6 :	Pump Energy Index (PEI), 40.6 : 21
12, 12 t.	Pump head
See also Test tolerances, reasons for	various methods to determine pump total head, 40.6 :
Pump as turbine (PAT) application, 2.3: 55, 56 f., 57 f.	13
Pump as turbine (PAT), 1.1-1.2 : 7, 1.3 : 114, 115f., 117	Pump head, determination, 40.6: 14 f.
hydraulic power recovery turbine (HPRT), 1.3: 115	horizontal nonsubmerged, 40.6: 14 f.
mechanical safety, 1.3 : 116	vertical submerged, 40.6 : 14 f.
total available exhaust head (TAEH), 1.3 : 117	Pump icons, 1.1-1.2 : 11, 73, 74 f.–81 f.
total required exhaust head (TREH), 1.3 : 117	Pump industry segments and applications, 1.3 : 3f., 3
turbine specific speed (NST), 1.3 : 115	Pump inlet disturbances, 9.8 : 65
Pump bell throat, velocities in, 9.8 : 67	free surface vortices, 9.8 : 65–66, 66f., 68f.
Pump characteristic curves, 9.6.7 : 1	pre-swirl, 9.8 : 66
Pump classifications, 1.3 : 110	subsurface vortices, 9.8 : 66
between-bearings (type BB) types and classifications,	velocities in pump bell throat, 9.8 : 67
1.3: 110, 112f.	Pump input (shaft) power (P_p) , 6.1-6.5 : 28
industry segments, 1.3 : 110	brake horsepower, defined, 2.1-2.2 : 36
overhung (type OH) types and classifications, 1.3 : 110, 111f.	calculation, 3.6 : 13 defined, 1.1-1.2 : 72, 3.1-3.5 : 22, 3.6 : 7, 6.6 : 7, 12.1-
rotodynamic centrifugal pumps, 1.3 : 110	12.6 : 36
rotodynamio ochunugai pumpo, r.o . 110	12.0. OO

Pump intake design, 9.8 : 1	air release valves, 9.6.6: 44
design objectives, 9.8 : 8–10	CFD. see computational fluid dynamics
preferred terms, 9.8: 2t5t.	check valve, 9.6.6 : 15
units and symbols, 9.8 : 5t.–8t.	check valves, 9.6.6 : 40
Pump length, 2.1-2.2 : 26, 27 f.	cold spring, 9.6.6 : 18
Pump location, 8.1-8.5 : 16	cold spring, defined, 9.6.6 : 18
Pump materials of construction, 9.1-9.5 : 5	computational fluid dynamics, 9.6.6: 11,13
abrasion-resistant cast irons, 9.1-9.5 : 17	constant-effort spring supports, 9.6.6 : 32, 33f.
aluminum and aluminum alloys, 9.1-9.5 : 21	Darcy-Weisbach equation, 9.6.6 : 26
and galvanic corrosion, 9.1-9.5 : 8	design considerations, 9.6.6 : 18
and temperature of liquid pumped, 9.1-9.5: 7	devices to improve flow to pump, 9.6.6 : 41
austenitic ductile iron, 9.1-9.5: 17	effects of misalignment between pump nozzle and
austenitic gray cast iron, 9.1-9.5 : 17	connection piping, 9.6.6 : 17
carbon steel, 9.1-9.5 : 17	effects of nozzle loads on pump operation, 9.6.6 : 16
chemical and physical properties, 9.1-9.5 : 7	expansion joint types, 9.6.6 : 36
chromium (ferric) stainless steel, 9.1-9.5: 18	expansion joints and couplings, 9.6.6: 36
chromium-nickel (austenitic) stainless steel, 9.1-9.5 : 18	expansion joints, application, 9.6.6 : 38
common polymer materials of construction for various	expansion joints, bolting arrangement, 9.6.6 : 38f.
liquids, 9.1-9.5 : 24	expansion joints, caution in use, 9.6.6 : 37
consideration factors, 9.1-9.5 : 5	expansion joints, elastomer, 9.6.6 : 36
copper and copper alloys, 9.1-9.5 : 19	expansion joints, metal bellows, 9.6.6 : 37f., 37
ductile iron, 9.1-9.5 : 17	expansion joints, rubber bellows, 9.6.6 : 36, 37f.
duplex stainless steels, 9.1-9.5 : 18	expansion joints, slip or packed, 9.6.6 : 36
gray cast iron, 9.1-9.5 : 16	expansion joints, slip/packing, 9.6.6: 36f.
high-alloy steels, 9.1-9.5 : 18	expansion joints, tie rods, 9.6.6 : 38
high-silicon cast irons, 9.1-9.5: 17	expansion joints, universal or double expansion, 9.6.6:
introduction, 9.1-9.5 : 5	37
low-alloy steels, 9.1-9.5 : 18	field adjustment, 9.6.6: 18
malleable cast iron, 9.1-9.5: 17	final installation, 9.6.6: 18
minimizing galvanic corrosion, 9.1-9.5: 8	flowcharts for use of standard hydraulic
nickel and nickel alloys, 9.1-9.5: 20	considerations, 9.6.6 : xi
other metals and coating systems, 9.1-9.5: 22	flowcharts for use of standard mechanical
relative ranking of adhesive wear resistance of	considerations, 9.6.6 : x
wrought materials, 9.1-9.5: 11 t.	foot valve installation, 9.6.6 : 40
super duplex stainless steels, 9.1-9.5 : 18	foot valves, 9.6.6 : 40, 41f.
Pump mechanical efficiency, 6.1-6.5 : 29	Hazen-Williams equation, 9.6.6: 26
Pump output (useful) power (P_u), defined, 12.1-12.6 : 36	H-Q curve, 9.6.6 : 24, 26
Pump output power (P_w)	Inlet (suction) piping examples, 9.6.6 : 5f., 6f., 7f., 8f.,
calculation, 3.6 : 13	9f., 12f.
definition and equation, 3.6 : 7	Inlet (suction) piping and computational fluid dynamics
defined, 1.1-1.2 : 72, 2.1-2.2 : 36, 3.1-3.5 : 22, 6.1-6.5 :	(CFD), 9.6.6 : 11
29, 6.6 : 7, 11.6 : 11	Inlet (suction) piping and entrained air, 9.6.6: 2
Pump performance after impeller diameter change, 1.3 :	Inlet (suction) piping and entrained gas, 9.6.6 : 2
69, 70f.	Inlet (suction) piping and physical hydraulic model
impeller with angled outside diameter, 1.3: 70f.	study, 9.6.6 : 11
impeller with straight outside diameter, 1.3: 70f.	Inlet (suction) piping concentric reducer, 9.6.6 : 3
trimming impeller vanes, 1.3 : 71, 71f.	Inlet (suction) piping effect of piping-generated swirl,
Pump performance curve vs. system curve, 1.3 : 67, 67f.	9.6.6 : 3
Pump piping (metering pumps)	Inlet (suction) piping for fluids close to the vapor
definitions of pump application terms, 7.8 : 2–4	pressure, 9.6.6 : 3
example, 7.8 : 2f	Inlet (suction) piping minimum required straight pipe
functions, 7.8 : 1	length (L2) before pump suction inlet, 9.6.6 : 4t.
purpose, 7.8 : 1	Inlet (suction) piping pipe size and velocity, 9.6.6 : 2
scope, 7.8 : 1	Inlet (suction) piping pump station retrofit or
Pump piping (rotodynamic pumps)	modification, 9.6.6 : 14
acoustic shock wave, 9.6.6 : 29	Inlet (suction) piping pump suction elbows, 9.6.6 : 13
air release valves, 9.6.6 : 44	Inlet (suction) piping requirements, 9.6.6 : 2

Pump piping (rotodynamic pumps) — <i>Continued</i> inspection of spring indicators, 9.6.6 : 18	typical temporary strainer, 9.6.6 : 41f. undesirable effect of a horizontal elbow mounted
installation, 9.6.6 : 17	directly on suction flange, 9.6.6 : 10f.
list of acronyms, 9.6.6 : 22	undisturbed flow, defined, 9.6.6 : 2
Newton's second law of motion, 9.6.6 : 29 outlet (discharge) piping required straight pipe lengths,	water hammer, 9.6.6 : 16, 28, 29, 31 Pump pressures, 2.1-2.2 : 37, 3.1-3.5 : 20
9.6.6: 15	definitions, 1.1-1.2 : 72, 12.1-12.6 : 37
outlet (discharge) piping requirements pipe	Pump rate of flow, 8.1-8.5 : 7
size/velocity requirements, 9.6.6 : 14	Pump rotor critical speed, 9.6.8 : 38
outlet (discharge) piping requirements, recommended	Pump rotor vibration, 9.6.8 : 38
valves, 9.6.6 : 15	Pump selection
outlet (discharge) piping requirements, water hammer,	driver sizing (CMP), 5.1-5.6 : 37
9.6.6 : 16	efficiency, 5.1-5.6 : 38
parallel operation, 9.6.6 : 18	entrained, noncondensable gas, 5.1-5.6 : 38
parallel operation, 9.6.6 : 18, 19, 20f., 21f.	equations used for finding equivalent water
parallel pump installation, 9.6.6 : 19f.	performance and estimating viscous pump input
physical hydraulic model study conditions for, 9.6.6 :	power, 9.6.7 : 15
11 pipe guides, 9.6.6 : 34, 34f.	example (metric units), 9.6.7 : 17 example (US customary units), 9.6.7 : 17
pipe guides, 9.6.6 : 34, 341. pipe nozzle alignment/pipe expansion load, 9.6.6 : 16	hydraulic sizing, 5.1-5.6 : 36
pipe restraints, 9.6.6 : 34	magnetic drive and driver sizing (MDP), 5.1-5.6 : 37
pipe supports and restraints, factors in design, 9.6.6 :	material selection, 5.1-5.6 : 37
32	operation range, 5.1-5.6 : 37
pipe supports and restraints, friction from supports,	preliminary selection of a pump for given head, rate of
9.6.6 : 35	flow, and viscosity conditions, 9.6.7: 15
pipe supports for vertical loads, 9.6.6 : 32, 33f.	pressure rating, 5.1-5.6 : 37
pipe supports/anchors, 9.6.6 : 17	thermal effects on NPSH and drive section, 5.1-5.6 :
piping for suction lift applications design	37
recommendations, 9.6.6 : 42	Pump selection, on intake design, 9.8 : 104, 105f.–106f.
piping for suction lift applications, 9.6.6 : 42 placement of restraints and stops, 9.6.6 : 32	Pump setting, 2.1-2.2 : 26, 27 f. Pump shaft power (P_p) , defined, 11.6 : 46
pressure pulsation and acoustic resonance, 9.6.6 : 45-	Pump shaft rotation, 2.1-2.2 : 21
46	Pump sound, as indicator of performance, 9.6.9 : 1
pressure wave calculation, 9.6.6 : 30, 31t.	Pump speeds, 8.1-8.5 : 13
pump analysis, 9.6.6 : 17	Pump suction hydraulics, computational fluid dynamics on,
pump nozzle flange analysis, 9.6.6: 17	9.8 : 55
pump station retrofit or modification examples, 9.6.6:	Pump technology designations, 50.7 : 11, 18
14	example, 50.7 : 18, 19 t.
pump suction piping/wet-well connection, 9.6.6 : 13	Pump test equipment, 40.7 : 10
references, 9.6.6 : 21	instrumentation calibration, 40.7 : 10
reflection points, defined, 9.6.6 : 46	performance and calibration, 40.7 : 10
required straight pipe lengths, 9.6.6 : 3 self-priming bypass, 9.6.6 : 43f.	Pump test laboratories, 40.7 : 3 location, 40.7 : 3
shut-off valves, 9.6.6 : 15	types, 40.7 : 3
solid hanger supports, 9.6.6 : 32, 33f.	Pump tested on a standardized installation inlet measuring
solids/slurry, 9.6.6 : 43	section, 40.6 : 14
spring supporta, guidelines for proper installation,	Pump torque versus speed characteristic, 9.6.7 : 25
9.6.6 : 34	Pump torque, 6.1-6.5 : 29
spring supports, 9.6.6 : 34, 35f.	characteristics, 6.1-6.5 : 43
strainers, 9.6.6 : 40	defined, 3.1-3.5 : 23
surge pressure, 9.6.6 : 28	requirements, 6.1-6.5 : 44
system curves, calculation, 9.6.6 : 24	Pump total discharge head, defined, 2.1-2.2 : 33
system curves, factors that affect head loss, 9.6.6 : 25	Pump total head (<i>H</i>) [$H_{t,x}$], defined, 2.1-2.2 : 33, 12.1-12.6 :
system curves, friction loss calculations, 9.6.6 : 25 tie rods, design recommendations, 9.6.6 : 39	35, 40.6 : 17 Pump total head calculation, 40.6 : 18
triple-duty valve, 9.6.6 : 15f., 15	Pump type BB1: Horizontal, axial split, single and two
true anchors, 9.6.6 : 34	stage, between-bearings design, 1.1-1.2 : 78
·	

```
Pump type BB1: Horizontal, axial split, single and two
      stage, between-bearings design — Continued
    icon, 2.1-2.2: 78 f.
Pump type BB2: Horizontal, radial split, single and two
      stage, between-bearings design, 1.1-1.2: 78
   icon, 2.1-2.2: 78 f.
Pump type BB3: Horizontal, axial split, multistage.
      between-bearings design, 1.1-1.2: 79
   icon, 2.1-2.2: 79 f.
Pump type BB4: Horizontal, radially split, multistage,
      between-bearings design, 1.1-1.2: 79
   icon, 2.1-2.2: 79 f.
Pump type BB5: Horizontal, radially split, multistage,
      double casing, between-bearings design, 1.1-1.2:
   icon, 2.1-2.2: 79 f.
Pump type CP1: Close-coupled sealless with canned
      motor, 81
    icon. 81 f.
Pump type CP2: Close-coupled horizontal in-line, 1.1-1.2:
      82
   icon, 2.1-2.2: 82 f.
Pump type CP3: Flexibly coupled horizontal in-line, 1.1-
      1.2: 82
   icon, 2.1-2.2: 82 f.
Pump type OH0: Horizontal, frame mounted, flexibly
      coupled single stage, overhung design, 1.1-1.2: 74
   icon, 2.1-2.2: 74 f.
Pump type OH00: Horizontal flexibly coupled, axial flow,
      single stage, overhung design, 1.1-1.2: 74
   icon, 2.1-2.2: 74 f.
Pump type OH1: Horizontal, foot mounted, single stage,
      overhung design, 1.1-1.2: 74
    icon, 2.1-2.2: 74 f.
Pump type OH10, 78 icon, 1.1-1.2: 78 f.
Pump type OH11, 78 icon, 1.1-1.2: 78 f.
Pump type OH12, 78 icon, 1.1-1.2: 78 f.
Pump type OH2: Horizontal, centerline mounted, single
      stage, overhung design, 1.1-1.2: 75
   icon, 2.1-2.2: 75 f.
Pump type OH3: Vertical, in-line mounted, single stage,
      with integral bearing bracket, 1.1-1.2: 75
   icon, 2.1-2.2: 75 f.
Pump type OH4: Vertical, in-line mounted, single stage,
      rigidly coupled to the driver shaft, 1.1-1.2: 76
   icon, 2.1-2.2: 76 f.
Pump type OH5: Vertical, in-line mounted, single stage,
      close coupled to the driver shaft, 1.1-1.2: 76
    icon. 2.1-2.2: 76 f.
Pump type OH6: High-speed, integral gear driven, single
      stage, overhung design, 1.1-1.2: 77
   icon, 2.1-2.2: 77 f.
Pump type OH8A, 1.1-1.2: 77
   icon, 2.1-2.2: 77 f.
Pump type OH8B, 1.1-1.2: 77
   icon, 2.1-2.2: 77 f.
Pump type OH9, 1.1-1.2: 78
```

```
icon, 2.1-2.2: 78 f.
Pump type RT1: Overhung, close-coupled, side channel
      design, 1.1-1.2: 80
   icon, 2.1-2.2: 80 f.
Pump type RT2: Overhung, close-coupled, peripheral
      design, 1.1-1.2: 80
   icon. 2.1-2.2: 80 f.
Pump type RT3: Between-bearing, flexibly coupled, side
      channel design, 1.1-1.2: 80
   icon, 2.1-2.2: 80 f.
Pump type RT4: Between-bearing, flexibly coupled,
      peripheral design, 1.1-1.2: 81
   icon, 2.1-2.2: 81 f.
Pump type tree diagram, 9.1-9.5: 4 f.
Pump type VS4, 1.1-1.2: 80
Pump type VS5, 1.1-1.2: 80
Pump types and factors that influence efficiency, 20.3: 5 t.
Pump types BB1-5, allowable bearing housing vibration,
      9.6.4: 8 f.
Pump types excluded from ANSI/HI 11.6, 11.6: 2
Pump types OH1-5 and OH7, allowable bearing housing
      vibration, 9.6.4: 8 f.
Pump types VS1-8, allowable bearing housing vibration,
      9.6.4: 8 f.
Pump volumetric efficiency (\eta_v), definition and formula,
      3.1-3.5: 19, 3.6: 2
Pump vs. system curves, 2.3: 31, 31 f.
Pump wear, 9.6.9: 5
Pump, defined, 14.6: 1
Pumpage entrained gases, 20.3: 2
   slurries, 20.3: 2
   solids size, 20.3: 2
   viscosity, 20.3: 2
Pumping chamber, defined, 3.1-3.5: 16
Pumping system failure categorizing probability of, 9.6.9:
      4, 5t.
   factors used in determining probability of, 9.6.9: 4
Pumping system requirements, 2.3: 30
Pumping systems, modification of existing, 9.8: 96
Pumps
   characteristics, 4.1-4.6: 21
   materials, 4.1-4.6: 18
   ratings, 4.1-4.6: 20
Pumps - general guidelines, 9.1-9.5: 1
   applicable pumps, 9.1-9.5: 1
   conversion factors, 9.1-9.5: 1
   preferred measurement units, 9.1-9.5: 1
   scope, 9.1-9.5: 1
Pumps tested with fittings. 40.6: 17
Pump-to-driver shafting, 2.3: 28
Purpose, 11.6: 1, 50.7: 1
Pusher seals, defined, 12.1-12.6: 37
Pusher split seals. 12.1-12.6: 82
p_{\nu}. See Velocity pressure
P_w. See Pump output power
p_z. See Elevation pressure
p_{\Delta}. See Differential pressure
```

<i>p</i> _∆ . See also Total differential pressure	defined, 1.1-1.2 : 70, 2.1-2.2 : 34, 6.6 : 2, 7.6 : 4, 12.1-
Q. See Rate of flow	12.6 : 35
See also Pump rate of flow	Rated discharge pressure, defined, 1.1-1.2: 73
Quantities (terminology definitions), 14.6: 2, 2 t., 40.6:	Rated point. See Guarantee point
2 t.	Rated pressure, 14.6 : 38
Quote, 50.7 : 13	Rated speed [n _r], defined, 1.1-1.2 : 68, defined, 2.1-2.2 : 3°
and R compliance, 50.7 : 15	Rate-of-flow monitoring, 9.6.5 : 19, 9.6.9 : 13
and R/D compliance, 50.7 : 15	alarm limits, 9.6.5 : 19
and R/D/S compliance, 50.7 : 15	condition indicators, 9.6.9 : 26t.
and R/D/S/A compliance, 50.7 : 16	control limits, 9.6.9 : 13
R compliance, 50.7 : 15, 16f., 17 t.	frequency, 9.6.9 : 5t., 13
R/D compliance, 50.7 : 15, 16f., 17t.	means of, 9.6.5 : 19
and HI-EDE implementation, 50.7 : 20	measuring devices, 9.6.9 : 13
R/D/S compliance, 50.7 : 15, 16f., 17 t.	Ratio of disk friction losses to useful power, 9.6.7 : 20f.
R/D/S field designations, 50.7 : 11, 12, 13, 17 t.	Ratio of distance from casing wall to impeller shroud, 1.3 :
R/D/S/A compliance, 50.7 : 16, 16 f., 17t.	23
and R compliance, 50.7 : 15	Ratio of runaway speed (n_{ro}) to normal speed (n_{no}) , 1.4 :
and R/D compliance, 50.7 : 15	26
and R/D/S compliance, 50.7 : 15	Rayleigh-Ritz equation, 9.6.8 : 40
	Reapplying for approval, 40.7 : 9
and R/D/S/A compliance, 50.7 : 16	
Request for Quotation (RFQ), 50.7 : 13	Reciprocating power pumps, 6.1-6.5 : 1
Radial flow impeller, 2.1-2.2 : 19	cup-type pistons, 6.1-6.5 : 78–79
Radial flow pumps, 1.1-1.2 : 10 f., 10	discharge piping, 6.1-6.5 : 56
Radial load, 1.3: 34	foundation bolts, 6.1-6.5 : 68, 68f.
Radial load, defined, 5.1-5.6 : 15	foundation, 6.1-6.5 : 68
Radial multistage in-line pump, 2.1-2.2 : 11	inlet system, 6.1-6.5 : 47–56
Radial seal, defined, 3.1-3.5: 18	inspection, 6.1-6.5 : 80
Radial synchronous magnetic couplings, 4.1-4.6 : 1	installation, 6.1-6.5 : 68–73
Radial thrust, 2.3 : 7	liquid end, 6.1-6.5 : 6, 6f., 7f., 8f., 9f., 10t., 11f.
calculation for volute pumps, 1.3 : 15	location, 6.1-6.5 : 67
circular (concentric) casing distribution, 1.3 : 19f.	malfunctions, cause and remedies, 6.1-6.5 : 81t.–83t.
double volute distribution, 1.3 : 16, 18f.	power end, 6.1-6.5 : 14–18f., 20t., 23f.–24
excessive, 1.3 : 72	preinstallation considerations, 6.1-6.5 : 67–68
single volute distribution, 1.3 : 16, 16f., 17f.	protection against seepage or flood, 6.1-6.5 : 67
Ramps, 9.8 : 85	right- and left-hand shaft extension, 6.1-6.5 : 3
Rare earth magnets, 4.1-4.6 : 25	servicing space, 6.1-6.5 : 68
Rate of flow (capacity) (Q or q) [Q], 6.1-6.5 : 24, 8.1-8.5 : 7	speeds, 6.1-6.5 : 36-43
correction to (calculation), 3.6: 14	starting, 6.1-6.5 : 43–47
defined, 1.1-1.2 : 68, 2.1-2.2 : 30, 3.1-3.5 : 18, 3.6 : 2,	storage, 6.1-6.5 : 67
6.6 : 5, 12.1-12.6 : 33	types and nomenclature, 6.1-6.5 : 1
measurement by miscellaneous methods, 3.6 : 20	typical services, 6.1-6.5 : 35
measurement by volume, 3.6 : 20	Reciprocating power types, 6.1-6.5 : 1f.
measurement by weight, 3.6 : 20	Reciprocating pump tests
Rate of flow measurement	objective of standard, 6.6 : 1
by calibration columns, 7.8 : 15	scope of standard, 6.6 : 1
by displacement-type meters, 6.6 : 18	Reciprocating pumps, 9.1-9.5 : 13
by flowmeters, 7.8 : 16	controlled volume, 9.1-9.5: 14
by head-type rate meters, 6.6 : 18	direct-acting (steam), 9.1-9.5 : 14
by nozzles, 6.6 : 19	power pumps, 9.1-9.5 : 13
by other methods, 6.6 : 20	Recirculation valves, 9.6.9: 8
by Pitot tubes, 6.6 : 20	Recommended tests. See Optional tests
by thin square-edged orifice plate, 6.6 : 19	Records, 7.6 : 13
by venturi meter, 6.6 : 19	Rectangular intake structures, 9.8: 11
by volume, 6.6 : 17	Rectangular intakes, 9.8: 10–16, 56
by weight, 6.6 : 17	approach flow patterns, 10, 56–57, 58f.–59f.
requirements for static pressure tappings, 6.6 : 19f.	design sequence, 9.8 : 16t.
Rated condition point[r or d], 3.6: 2	filler wall details, 9.8 : 14f., 15t.

Rectangular intakes — Continjnued	Reluctance (R), defined, 4.1-4.6 : 11
for shallow liquid source, 9.8 : 100–101, 102f.–103f.	Renewal of approval, 40.7: 6
open versus partitioned structures, 9.8 : 10, 57, 60f.	audits, 40.7 : 6
recommendations for dimensioning, 9.8: 11–12	Repeatability, 9.6.9: 27
structure layout, 9.8: 13f., 15t.	defined, 9.6.5 : 56
trash racks and screens, 9.8: 10-11	Report, 7.6 : 13
Rectangular wet wells	Reporting of test results, 40.6 : 21
anti-rotation baffles, 9.8: 41	Required data, 50.7 : 13
cleaning procedure, 9.8 : 41	See also R/D/S field designations
confined wet-well design, 9.8: 40, 41f.	Reseating pressure, defined, 3.1-3.5 : 17
control of sediments, 9.8 : 40	Reservoirs, 9.8 : 108
design of, 9.8 : 87–88, 89f.–92f.	Resistance temperature detectors (RTDs), 9.6.9 : 7
geometry of, 9.8: 40	Resonance, defined, 9.6.8 : 27, 61
suction inlet clearance, 9.8: 41	Resonant frequency, defined, 9.6.8 : 27
Reed critical frequency (RCF) of vertical structures, 9.6.8 :	Reverse runaway speed versus specific speed, 1.4 : 26 f.
42	Reverse runaway speed, 1.3 : 82, 2.3 : 32
Reed critical frequency versus static deflection, 9.6.8 : 77f.	Reverse runaway speed, defined, 1.4 : 26
Reed frequency or reed critical frequency (RCF), defined,	Reviewer, defined, 40.7: 1
9.6.8 : 61	Revolution counter and timer (in rotary speed
Reed frequency, 9.6.8: 38	measurement), 3.6 : 25
Reference and source material, 3.1-3.5 : 70, 4.1-4.6 : 26,	Revolution counters, in speed (rpm) monitoring, 9.6.5: 20
5.1-5.6 : 46, 9.6.2 : 37, 40.6 : 43	9.6.9 : 14
bearings, 5.1-5.6 : 46	Reynolds number, 9.8: 50–51
sealless pumps, 5.1-5.6 : 46	Rheopectic fluid, defined, 3.1-3.5 : 40, 40f.
Regenerative turbine pumps, 1.1-1.2 : 4 f., 7, 1.3 : 1, 3f.,	Right- and left-hand designations, 8.1-8.5 : 2
126	Rigid coupling, defined, 9.6.8 : 61
applications, 1.3 : 129	Rigid foundation, defined, 9.6.8 : 61
axial thrust, 1.3 : 130	Rigid rotor, defined, 9.6.8 : 62
bucket (impeller channels), 1.3 : 127	Rigidity, 9.6.4 : 19
change in flow at constant speed, 1.3 : 129	Risk, 9.6.8 : 11
change in head at constant speed, 1.3 : 129	defined, 9.6.8 : 62
change in speed, 1.3 : 129	River intakes, 9.8 : 107–108
circulatory flow, 1.3 : 127	Rolling element bearings
dam, 1.3 : 128	condition monitoring failure modes, 9.6.9 : 15t.
discharge, 1.3 : 128	defect detection of, 9.6.9 : 12
efficiency, 1.3 : 130	failure indicated by power monitoring, 9.6.9 : 5
flow path, 1.3 : 128f.	temperature monitoring, 9.6.5 : 7, 9.6.9 : 7
icons, 2.1-2.2 : 80 f.–81 f.	Rotameters, 9.6.9 : 13
impeller between bearings, two stage, 1.3 : 127f.	Rotameters, in rate-of-flow monitoring, 9.6.5 : 19
impeller, 1.3 : 129	Rotary multiphase pumps in oil and gas application
maintenance, 1.3 : 131	integrated multiphase pump packages, 3.1-3.5 : 50
performance, 1.3 : 130f.	types, 3.1-3.5 : 50
radial thrust, 1.3: 130	Rotary pump tests, 3.6 : 1
side channels (flow-through area), 1.3 : 129	Rotary pumps
side clearance, 1.3: 129	axial piston pumps, 3.1-3.5 : 7
suction, 1.3 : 129	basic types, 3.1-3.5 : 1, 1f.
teeth, 1.3 : 129	capability tables, 3.1-3.5 : 2
terminology, 1.3 : 127	circumferential piston, 3.1-3.5 : 11
types and classifications, 1.3 : 126f.	condition monitoring failure modes, 9.6.9 : 15t.
Regenerative turbine, between bearings, peripheral	condition monitoring indicators, 9.6.9 : 23t.
pump, 1.1-1.2 : 36 f.	consolidated range charts, 3.1-3.5: 2
Regenerative turbine, overhung peripheral pump, 1.1-1.2 :	control limits, 9.6.9 : 5
35 f.	defined, 3.1-3.5 : 1
Regenerative turbine, overhung side channel pump, 1.1-	design and application, 3.1-3.5 : 33
1.2 : 34 f.	flexible member, 3.1-3.5 : 8
Relief valve, 6.1-6.5 : 57, 8.1-8.5 : 17, 9.6.9 : 8	gear, 3.1-3.5 : 9
defined, 3.1-3.5 : 17	high power detection, 9.6.9 : 6

Rotary pumps — <i>Continued</i>	(centrifugal) pumps
installation, operation, and maintenance, 3.1-3.5: 54	Rotodynamic (vertical) pump types, 2.4 : 1
leakage monitoring, 9.6.9 : 9, 10t.	vertical, axial flow, lineshaft (VS3), 2.4: 1
lobe, 3.1-3.5 : 9	vertical, diffuser, can-mounted (VS6), 2.4 : 1
low power detection, 9.6.9 : 6	vertical, diffuser, deep well (VS1), 2.4: 1
monitoring and control systems, 9.6.9 : 1, 2f., 3f.	vertical, diffuser, double casing, in-line, floor mounted
monitoring interval, 9.6.9 : 4	(VS8), 2.4 : 1
operating conditions that can affect power, 9.6.9 : 6	vertical, diffuser, short set (VS1), 2.4: 1
potential failure models, 9.6.9 : 1	vertical, diffuser, submersible, deep well (VS0), 2.4: 1
power control limits, 9.6.9 : 6	vertical, diffuser, submersible, short set (VS0), 2.4: 1
pressure monitoring, 9.6.9 : 11	vertical, sump, cantilever (VS5), 2.4 : 1
rate-of-flow monitoring, 9.6.9 : 13	vertical, sump, lineshaft (VS4), 2.4 : 1
screw pumps, 3.1-3.5 : 11	vertical, volute, double suction, can type (VS7), 2.4: 1
See also Sealless pumps	vertical, volute, double suction, wet pit (VS2), 2.4: 1
sliding vane (rigid), 3.1-3.5 : 7	vertical, volute, multistage axial split, can type (VS7a),
speed (rpm) monitoring, 9.6.9: 14	2.4 : 1
temperature monitoring, 9.6.9 : 7	Rotodynamic (vertical) pumps, 9.1-9.5 : 15
vibration monitoring, 9.6.9 : 12	all bronze, 9.1-9.5 : 16
viscosity and performance in, 9.6.9: 8	all iron, 9.1-9.5 : 16
Rotary pumps advantages, 4.1-4.6 : 13	all stainless-steel, 9.1-9.5: 16
application information. See ANSI/HI 3.1-3.5	bronze fitted, 9.1-9.5 : 16
diagrammatic breakdown of types. See ANSI/HI 3.1-	specific-composition bronze, 9.1-9.5: 16
3.5	stainless-steel fitted, 9.1-9.5: 16
Rotary pumps all bronze, 9.1-9.5 : 13	Rotodynamic centrifugal pump types, 1.4 : 1
all iron, 9.1-9.5 : 13	between-bearing, separately coupled, multistage
all stainless, 9.1-9.5 : 13	pumps (BB3, BB4, and BB5), 1.4 : 1
and galvanic corrosion, 9.1-9.5 : 13	between-bearing, separately coupled, one- and two-
bronze fitted, 9.1-9.5 : 13	stage pumps (BB1 and BB2), 1.4: 1
corrosive nature of liquids effects, 9.1-9.5: 13	close-coupled pumps (OH5, OH5A, OH6, OH7, OH8A
Rotary speed measurement, 3.6 : 25	and OH8B), 1.4 : 1
Rotating assembly defined, 1.1-1.2 : 43, 3.1-3.5 : 17	horizontal, flexibly coupled, axial flow, single stage,
terms, 2.1-2.2 : 41	overhung design (OH00), 1.4 : 1
Rotating disk meters, in rate-of-flow monitoring, 9.6.5 : 16	overhung impeller, rigidly coupled pumps (OH4), 1.4 : 1
Rotation check, 3.1-3.5 : 58	overhung impeller, separately coupled pumps (OH0,
Rotation speed	OH1, OH1A, OH2, OH3, and OH3A), 1.4 : 1
and flow rate, head, and power, 2.3: 37	regenerative turbine pumps (RT1, RT2, RT3, and
Rotative speed (formula), 9.6.1 : 17	RT4), 1.4 : 1
Rotodynamic (centrifugal) pumps, 1.3 : 1, 12, 12f., 2.3 : 62, 9.1-9.5 : 14	sealless centrifugal pumps (OH9, OH10, OH11, and OH12), 1.4 : 1
all bronze, 9.1-9.5 : 15	special-effects pumps (Pitot tube, etc.), 1.4: 1
all iron, 9.1-9.5 : 15	vertically suspended, separate discharge (sump),
all stainless-steel, 9.1-9.5 : 15	volute style (VS4 and VS5), 1.4 : 1
between-bearings (BB) type, 1.3 : 1, 33, 33f., 112f.	Rotodynamic centrifugal pumps classification methods,
bronze fitted, 9.1-9.5 : 15	1.1-1.2 : 1
classifications, 1.3 : 1	construction drawings, 2.1-2.2 : 11, 12 f.–37 f., 55
conversion of kinetic energy to pressure energy, 1.3: 1	defined, 2.1-2.2 : 1
overhung (OH) type, 1.3 : 1, 32, 32f., 110, 111f.	definitions of pump application terms, 2.1-2.2: 65
Pitot tube pumps, 1.3 : 1, 3f., 131	dimension letter designations, 2.1-2.2: 59
regenerative turbines, 1.3 : 1, 3f., 126	nomenclature, 2.1-2.2 : 47
rigid polymers/composites, 9.1-9.5 : 15	part names (numerical listing), 2.1-2.2: 55, 56 t.
specific-composition bronze, 9.1-9.5 : 15	part names and definitions (alphabetical listing), 2.1-
stainless-steel fitted, 9.1-9.5 : 15	2.2 : 47, 47 t.
sump pumps, 1.3 : 3f., 137	position of casing and shaft rotation, 2.1-2.2 : 44 f.
types, 1.3 : 1, 2f.	position of casing, 2.1-2.2 : 44
vertically suspended (VS) type, 1.3 : 1, 110, 112f.	pump dimensions (letter designations), 2.1-2.2 : 59, 59
Rotodynamic (centrifugal) slurry pumps. See Slurry pumps	f.—64 f.
Rotodynamic (radial) pumps. See Rotodynamic	scope of standard, 2.1-2.2: 1

Rotodynamic centrifugal pumps classification methods —	bare rotor terminology, 2.1-2.2 : 41
Continued	close coupled, 2.1-2.2 : 1
size, 2.1-2.2 : 11	construction drawings, 2.1-2.2: 11, 12 f37 f., 55
symbols, 2.1-2.2 : 65 t.	dimensionally interchangeable pumps, 2.1-2.2: 11
types, 2.1-2.2 : 1	duplicate performance pumps, 2.1-2.2 : 11
Rotodynamic pump affinity rules (formulas), 11.6 : 48	high-speed integral gear-driven, 2.1-2.2 : 2 f., 6
Rotodynamic pump applications	hydraulic power recovery turbine, 2.1-2.2 : 7
effect of gas on centrifugal pump performance, 2.3:	identical pumps, 2.1-2.2: 41
52, 55 f.	impeller between-bearing type, 2.1-2.2 : 3 f., 6
rotative speed limitations, 2.3 : 57, 59 f., 60 f.	impeller designs, 2.1-2.2 : 8
two-phase flow (liquids with gas), 2.3 : 52	mixed flow, 2.1-2.2 : 1
vertical pumps as turbines (PATs), 2.3 : 55, 56 f., 57 f.	most common types, 2.1-2.2: 1
Rotodynamic pump classifications, 2.3 : 52	nomenclature for pump size, 2.1-2.2: 11
between bearings (Type BB), 2.3: 52, 54 f.	overhung pump attributes, 2.1-2.2: 6 t.
overhung (Type OH), 2.3 : 52, 53 f.	overhung pump types and classifications, 2.1-2.2 : 1, 2
rotodynamic centrifugal pumps, 2.3 : 52	f.
rotodynamic vertical pumps, 2.3 : 52	
	overhung, flexibly coupled, 2.1-2.2 : 2 f., 5
vertically suspended (Type VS), 2.3 : 52, 54 f.	overhung, rigidly coupled, 2.1-2.2 : 2 f., 5
Rotodynamic pump dynamic response, 9.6.8 : 6	overhung, short coupled, 2.1-2.2: 2 f., 5
Rotodynamic pump efficiency prediction, 20.3 : 1	Pitot tube type, 2.1-2.2 : 7
examples, 20.3 : 3	regenerative turbine type, 2.1-2.2: 4 f., 7
method used, 20.3: 3	rotating assembly terminology, 2.1-2.2: 41
purpose of guideline, 20.3 : 1	typed by general mechanical configuration, 2.1-2.2: 1,
Rotodynamic pump icons, 1.1-1.2 : 73	2 f., 3 f., 4 f.
Rotodynamic pump types between bearings, 9.6.8 : 9f.	vertically suspended type, 2.1-2.2: 4 f.
overhung, 9.6.8 : 8f.	vortex (recessed impeller) type, 2.1-2.2 : 7
vertically suspended, 9.6.8 : 10f.	Rotodynamic pumps for assessment of applied nozzle
Rotodynamic pump types, 1.1-1.2 : 1	loads, 9.6.2 : 1
between bearings, 2.1-2.2: 3 f.	applicable pump types, 9.6.2 : 1
circulator pumps, 2.1-2.2 : 5 f.	axially split one- and two-stage pumps (BB1), 9.6.2 :
circulator, 2.1-2.2 : 7	15
close coupled attributes, 2.1-2.2 : 1	excluded pump types, 9.6.2 : 1
close-coupled circulator pumps (CP1 and CP2), 2.1-	horizontal end suction pumps (ANSI/ASME B73.1 and
2.2 : 7	B73.3), 9.6.2 : 1, 3
flexibly coupled attributes, 2.1-2.2: 5	scope, 9.6.2 : 1
flexibly coupled circulator pumps (CP3), 2.1-2.2: 8	vertical in-line pumps (ANSI/ASME B73.2), 9.6.2: 10
impeller between-bearings (BB), 2.1-2.2: 6	vertical turbine short set pumps (VS1 and VS2), 9.6.2
overhung impeller (OH), 2.1-2.2: 1	18
overhung impeller attributes, 2.1-2.2 : 6 t.	Rotodynamic pumps hydraulic performance acceptance
overhung impeller, 2.1-2.2 : 2 f.	tests. See Hydraulic performance acceptance tests
rigidly coupled attributes, 2.1-2.2 : 5	(rotodynamic pumps) types, 14.6 : 1
	Rotodynamic pumps, 9.1-9.5 : 14
short coupled attributes, 2.1-2.2 : 5	
Rotodynamic pumps	general designation, 9.1-9.5 : 14
affinity rules, 2.3 : 37	materials, 9.1-9.5 : 14
axial flow, 1.3 : 1, 12, 12f.	Rotodynamic pumps, condition monitoring, 9.6.5 : 1
classifications, 2.3 : 5, 52	Rotodynamic pumps. See also NPSH margin
defined, 1.3 : 1	Rotodynamic submersible pumps, defined, 11.6 : 1
defined, 2.3 : 1	Rotodynamic vertical pump icons – vertically suspended,
flexibility of design, 2.3: 1	2.1-2.2 : 37
materials selection, and corrosion minimization, 2.3:	axial flow VS3, 2.1-2.2 : 39
80	deep well (line shaft), 2.1-2.2 : 2
mixed flow, 1.3 : 1, 12, 12f.	definition, 2.1-2.2 : 1
	discharge through column – axial flow – wet pit (VS3),
other configurations, 2.3 : 62	
pump as turbine (PAT) application, 2.3 : 55, 56 f., 57 f.	2.1-2.2 : 39 f.
pump types, 2.3 : 1, 2 f., 3 f.	discharge through column – diffuser – wet pit (VS1),
types, 1.3 : 1, 12, 12f.	2.1-2.2 : 38 f.
Rotodynamic pumps axial flow, 1.1-1.2 : 1	discharge through column – volute – wet pit (VS2),

2.1-2.2 : 39 f.	nazards and material properties of pumped fluid, 5.1.
discharge through column, 2.1-2.2: 38	5.6 : 34
pumping element, 2.1-2.2 : 1	requirements for reduction or elimination of fugitive
separate discharge – cantilever (VS5), 2.1-2.2 : 40 f.	emissions, 5.1-5.6 : 35
separate discharge – line shaft – vertical sump (VS4),	Safety relief valves, 7.8 : 13
2.1-2.2 : 40 f.	Safety, 6.1-6.5 : 67, 8.1-8.5 : 15
separate discharge, 2.1-2.2: 40	6.1-6.5 : 35
submersible – turbine bowl, 2.1-2.2 : 1	Saltation, defined, 12.1-12.6 : 40
submersible turbine (VS0), 2.1-2.2: 38 f.	Samarium cobalt magnet, defined, 5.1-5.6 : 17
submersible, 2.1-2.2 : 38	Samarium cobalt, defined, 4.1-4.6: 10
types and nomenclature, 2.1-2.2: 1	SAR number, defined, 12.1-12.6 : 43
vertical volute multistage double casing pump (VS7a),	Scalloping, 1.3: 29
2.1-2.2 : 41 f.	Schematic for open or closed vented tank, 7.6 : 9f.
vertically suspended – double casing – double suction	Screw pumps, 3.1-3.5 : 1f.
– diffuser (VS6), 2.1-2.2 : 41 f.	description, 3.1-3.5 : 11
vertically suspended – double casing – volute –	multiple-screw pumps, 3.1-3.5: 12
diffuser (VS7), 2.1-2.2 : 41 f.	single screw (progressing cavity), 3.1-3.5: 11
vertically suspended – double casing, 2.1-2.2: 41	Screw-type pumps, 1.3 : 124, 124f.
vertically suspended – double, 2.1-2.2 : 41 f.	Seal cage. See Lantern ring
vertically suspended – in-line casing – multistage	Seal chamber, 2.3 : 22, 3.1-3.5 : 32f.
diffuser (VS8), 2.1-2.2 : 42 f.	defined, 3.1-3.5 : 18
vertically suspended in-line casing diffuser, 2.1-2.2 : 42	with external seals, 2.3: 22, 22 f.
wet pit, short set (line shaft) - single and double	with internal seal arrangement, 2.3: 22, 23 f.
suction, 2.1-2.2 : 2	with special seal arrangement, 2.3: 22, 24 f.
Rotodynamic vertical pumps design and application, 2.3 :	Seal faces, temperature monitoring, 9.6.5 : 6
1	Seal flushing arrangement and associated piping, 9.6.7 :
Rotodynamic vertical pumps, 1.3: 1	25
Rotor critical speed with shaft of negligible mass and	Sealless pump applications, 5.1-5.6 : 1
several concentrated masses, 9.6.8: 40f.	defined, 5.1-5.6 : 1, 14
Rotor critical speed with single attached mass, 9.6.8: 39f.	design, 5.1-5.6 : 1
Rotor first and second critical speeds, 9.6.8 : 38f.	primary designs, 5.1-5.6 : 1
Rotor lateral analysis for VS pumps, 9.6.8 : 29	Sealless pumps
Rotor lateral natural frequency, defined, 9.6.8 : 62	bearing wear monitoring, 9.6.5 : 20
Rotor torsional natural frequency, defined, 9.6.8 : 62	liquid temperature, 9.6.9 : 8
Rotor, defined, 3.1-3.5 : 16, 9.6.8 : 62	pressure buildup indicating leakage in, 9.6.9 : 10
Rotordynamic critical speed map, 9.6.8 : 48f.	temperature damage, 9.6.9: 8
Rotordynamic damping, defined, 9.6.8 : 62	temperature monitoring for magnetic couplings, 9.6.5
Rotordynamic instability, defined, 9.6.8 : 62	6
Rotordynamic stiffness, defined, 9.6.8 : 62	temperature monitoring of liquid lubricants, 9.6.5: 7
Rows of magnets, defined, 5.1-5.6 : 18	vibration measurement on, 9.6.9 : 12
RT1-RT4. See Pump type RT1-Pump type RT4	Sealless rotodynamic pumps additional designs, 5.1-5.6:
RTDs. See Strip resistance temperature detectors	54
Rubber. See Natural rubber; Synthetic rubber elastomers	canned motor pump (CMP), 5.1-5.6: 1
RUN number, 9.6.8 : 11	canned motor pump definitions, 5.1-5.6 : 16
Runaway speed, defined, 2.4 : 28	definitions, 5.1-5.6 : 14
Runout condition, 2.3: 41	design and application, 5.1-5.6: 19
Runout, 9.6.4 : 15	installation, operation, and maintenance, 5.1-5.6: 39
S. See Slip	magnetic drive pump (MDP), 5.1-5.6 : 2
Safety characteristics, 4.1-4.6 : 21	magnetic drive pump definitions, 5.1-5.6 : 16
Safety consequences, 9.6.9 : 4, 4t.	part names, 5.1-5.6 : 3
Safety considerations, 4.1-4.6 : 18	parts names and definitions, 5.1-5.6 : 11t.
acute toxicity and skin corrosion, 5.1-5.6 : 34	tests, 5.1-5.6 : 48
acute toxicity categories, 5.1-5.6 : 34	types and nomenclature, 5.1-5.6 : 1
circulation piping plan selection, 5.1-5.6 : 35	types, 5.1-5.6 : 2f.
environmental considerations, 5.1-5.6 : 35	Sealless, defined, 4.1-4.6 : 13
flammability, 5.1-5.6 : 35	Sealless, magnetically driven rotary pumps advantages,
flammable liquid hazard categories, 5.1-5.6 : 35	4.1-4.6 : 13

```
entrance conditions. 9.8: 100-101
Sealless, magnetically driven rotary pumps advantages —
                                                                 handling and accumulation of, 9.8: 107
      Continued
  close-coupled, vane-type, magnetic drive pumps, 4.1-
                                                                 pump bay details near the pumps, 9.8: 101, 103f.
                                                                 pump bay dividing walls, 9.8: 101
      4.6: 1, 2 f.
   diagrammatic breakdown of rotary pump types. See
                                                                 Shallow liquid source, rectangular intakes for, 9.8: 100
                                                                 vertical transition, 9.8: 101
      ANSI/HI 3.1-3.5
   general precautions. 4.1-4.6: 12
                                                             Segmented (segmental) ring design. See Pump type BB4
   nomenclature. 4.1-4.6: 6 t.
                                                             Selection guideline, 4.1-4.6: 20
   operating principles, 4.1-4.6: 13
                                                                 data sheet, 4.1-4.6: 22
   radial synchronous magnetic couplings, 4.1-4.6: 1
                                                                 pump and drive characteristics, 4.1-4.6: 21
   reasons for use. 4.1-4.6: 12
                                                                 pump and system ratings. 4.1-4.6: 20
   scope of standard, 4.1-4.6: 1
                                                                 pumped liquid characteristics, 4.1-4.6: 20
   See also ANSI/HI 3.1-3.5; ANSI/HI 3.6
                                                                 safety characteristics, 4.1-4.6: 21
   separately coupled, internal gear, magnetic drive pump
                                                                 specifications, 4.1-4.6: 20
      with secondary control, 4.1-4.6: 1, 3 f.
                                                                 supplemental data sheet, 4.1-4.6: 21
   separately coupled, screw-type, magnetic drive pump,
                                                             Self-priming pumps, 1.3: 119, 120f., 121f., 123
      4.1-4.6: 1, 4f.
                                                             Self-release couplings, 2.3: 29
   types of magnetic drive configurations, 4.1-4.6: 1, 2f.,
                                                             Semi-open impellers, 2.3: 6 f., 6
      3f., 4 f.
                                                                 and axial thrust, 2.3: 9 f., 9
Seals, 12.1-12.6: 71
                                                             Sensors
   and barrier fluid flow monitoring, 9.6.9: 10, 10t.
                                                                fluid level, 9.6.9: 10
   and catch tank monitoring, 9.6.9: 10, 10t.
                                                                 temperature, 9.6.9: 7
   and gauge mounting, 9.6.9: 11
                                                                 vibration, 9.6.9: 12
   and pressure buildup monitoring, 9.6.9: 10, 10t.
                                                             Separately coupled, defined, 4.1-4.6: 12, 5.1-5.6: 18
   application guidelines for leakage monitoring systems,
                                                             Separately coupled, internal gear, magnetic drive pump
                                                                   with secondary control, 4.1-4.6: 1, 3f.
      9.6.9: 10t.
   centrifugal (dynamic), 12.1-12.6: 75, 75f.
                                                             Separately coupled, screw-type, magnetic drive pump,
   dual pressurized arrangements, 9.6.9: 10, 10t.
                                                                   4.1-4.6: 1. 4f.
   dual unpressurized arrangements, 9.6.9: 10, 10t.
                                                             Separation margin, defined, 9.6.8: 62
   leakage indicated by vibration monitoring, 9.6.9: 12
                                                             Series operation. 2.3: 39, 39 f.
                                                             Servicing space, 8.1-8.5: 16
   leakage, double mechanical seal condition monitoring
      failure mode, 9.6.9: 18t.
                                                             Set pressure. See Cracking pressure
                                                             Settling slurries, 6.1-6.5: 35, 12.1-12.6: 48–50
   leakage, single mechanical seal condition monitoring
      failure mode, 9.6.9: 16t.
                                                                 defined, 12.1-12.6: 41, 45
   mechanical, 12.1-12.6: 77-85
                                                             Settling velocity, 6.1-6.5: 35
                                                                 defined, 12.1-12.6: 41
   multiple lip, 12.1-12.6: 76–77, 76f.
   pressure boundary leakage condition monitoring failure
                                                            Severity levels, 9.6.9: 4, 4t., 5t.
      modes. 9.6.9: 21t.
                                                             Shaft deflection
   seal face failure mode indicated by temperature
                                                                 calculating dry critical speed for between-bearings
      monitoring, 9.6.9: 7
                                                                   (type BB) impellers, 1.3: 41
   sniffer monitoring of, 9.6.9: 9, 10t.
                                                                 calculating dry critical speed for overhung (type OH)
   visual monitoring of, 9.6.9: 9, 10t
                                                                   impellers, 1.3: 37
Secondary containment system, defined, 4.1-4.6: 11, 5.1-
                                                                 calculating for between-bearings (type BB) single-
                                                                   stage pumps, 1.3: 39f., 39
      5.6: 19, 7.8: 8
Secondary containment test acceptance criteria, 5.1-5.6:
                                                                 calculating for overhung (type OH) impellers, 1.3: 36,
                                                                   36f.
   objective, 5.1-5.6: 50
                                                                 defined, 1.3: 35
   test parameters, 5.1-5.6: 50
                                                                 overhung (type OH) impeller pumps (API standard),
   test procedure. 5.1-5.6: 50
                                                                   1.3: 35
                                                                 overhung (type OH) impeller pumps (ASME standard),
Secondary containment, defined, 4.1-4.6: 11, 5.1-5.6: 19
Secondary control system, defined, 4.1-4.6: 11, 5.1-5.6:
                                                                   1.3: 35
                                                                 overhung (type OH) impeller pumps (ISO standard),
Secondary control, defined, 4.1-4.6; 11, 5.1-5.6; 19
                                                                   1.3: 35
Secondary seals, defined, 12.1-12.6: 38
                                                             Shaft lateral analysis, defined, 9.6.8: 62
Sediments, 9.8: 108
                                                             Shaft position monitoring, 9.6.5: 18
   configuration for, 9.8: 102f.
                                                                 alarm limits, 9.6.5: 18
   control and removal, 9.8: 109
                                                                 by dial indicator, 9.6.5: 19
```

Shaft position monitoring — Continued	simple gap seals, 1.3: 66
by proximity probes, 9.6.5 : 19	single seals, 1.3 : 63
means of, 9.6.5 : 19	tandem seals, 1.3 : 63
Shaft rotation, 1.1-1.2 : 44 f., 44, 45 f.	throat bushing, 1.3: 63
Shaft seals, 1.3 : 60, 2.3 : 20, 5.1-5.6 : 20	unbalanced seals, 1.3: 64
alternative methods, 2.3 : 26	Shaft sleeves, 12.1-12.6 : 75
alternatives to mechanical seals, 1.3: 64	Shaft support, 1.3: 34
back-to-back seals, 1.3: 61	Shafting, 2.3 : 14
balance ratio, 1.3: 62	combined shear stress, 2.3 : 14
balanced seals, 1.3 : 62	pump-to-driver, 2.3 : 28, 28 f., 29 f.
bearing house closures, 2.3 : 26	See also Enclosed line-shaft pumps; Open line-shaft
bearing housing sealing, 1.3 : 64, 65f.	pumps
bearing isolators, 1.3 : 66, 67f., 2.3 : 26	Shafts, 2.3 : 65, 74
contact seals, 1.3 : 65	breakage condition monitoring failure modes, 9.6.9 :
contacting wet seals, 1.3 : 62	20t.
containment seals, 1.3 : 63	breakage indicated by power monitoring, 9.6.9 : 5
double seals, 1.3 : 63	breakage indicated by vibration monitoring, 9.6.9 : 12
dual pressurized seals, 1.3 : 63	displacement control limits, 9.6.5 : 16
dual unpressurized seals, 1.3: 63	leakage guidelines, 9.6.9 : 11
dynamic seals, 1.3 : 63	maintenance inspection for bending fatigue, 9.6.5 : 25
face seals, 1.3 : 65	26
face-to-back seals, 1.3 : 63	maintenance inspection for breakage, 9.6.5 : 25, 26
face-to-face seals, 1.3: 63	maintenance inspection for torsional fatigue, 9.6.5 : 25
flexible rotors, 1.3: 63	26
flexible stators, 1.3 : 63	maintenance inspection for torsional overload, 9.6.5 :
labyrinth seals, 1.3 : 66	26
lip seals, 1.3 : 65, 66f.	power guidelines, 9.6.9 : 6
lubricant return, 1.3 : 66	pressure guidelines, 9.6.9 : 12
mating rings, 1.3 : 63	rate-of-flow guidelines, 9.6.9 : 13
mechanical seal applications, 1.3: 61	Shut-down limits defined, 9.6.9: 5
mechanical seal classification by arrangement, 1.3:	Sleeve bearings failure, 9.6.9: 5
62f.	speed (rpm) guidelines, 9.6.9: 14
mechanical seal classification by design, 1.3: 62f.	temperature guidelines, 9.6.9 : 9
mechanical seal nomenclature, 1.3: 61	temperature monitoring of, 9.6.9 : 7
mechanical seal, 1.3 : 63	vibration guidelines, 9.6.9 : 13
mechanical seals (classified by arrangement), 2.3: 21	vibration monitoring, 9.6.5 : 15
f.	Shear rate, defined, 3.1-3.5: 37
mechanical seals (classified by design), 2.3: 21 f.	Shear sensitivity, 3.1-3.5 : 2, 4.1-4.6 : 17
mechanical seals, 1.3 : 61, 2.3 : 20	Shear stress, defined, 3.1-3.5 : 37
noncontact seals, 1.3: 65	Shell, defined, 4.1-4.6 : 12
nonpusher seals, 1.3 : 63	Shipment inspection, 3.1-3.5 : 54
packed stuffing box for low to intermediate pressure	Shoe-box-type formed suction intake, 9.8 : 97, 99f.
service, 2.3 : 24, 25 f.	Shut-down analysis, 2.3 : 32
packed stuffing box with lantern ring, 1.3 : 60, 60f.	Shutdown limit, 9.6.5: 4
packed stuffing box with water injection, 2.3: 24, 25 f.	Shutdown, 1.3 : 82
packed stuffing box without lantern ring, 1.3 : 60, 60f.	Shutoff (SO), defined, 1.1-1.2 : 71, 2.1-2.2 : 34
packed stuffing boxes, 1.3: 60, 2.3: 24	Shut-off flow, defined, 12.1-12.6 : 36
pusher seals, 1.3 : 63	Shut-off head, defined, 11.6: 7
quench glands, 1.3: 63	Side valve pot type liquid end, 8.1-8.5 : 4, 4f.
seal chambers with external seals, 2.3 : 22, 22 f.	Silicon carbide bearings, defined, 5.1-5.6 : 15
seal chambers with internal seal arrangement, 2.3: 22,	Similar, defined, 9.6.8: 62
23 f.	Simple horizontal centrifugal pump system, 9.6.8 : 41f.
seal chambers with special seal arrangement, 2.3: 22,	Simplex pump, 6.1-6.5 : 1f., 2f., 3
24 f.	Single seals, 12.1-12.6 : 77–80
seal chambers, 1.3 : 64, 2.3 : 22	application limits of, 12.1-12.6 : 77–79, 77t.
sealless pumps, 1.3 : 64	defined, 12.1-12.6 : 38
secondary seals, 1.3 : 63	Single-acting pump, 6.1-6.5 : 1, 2f.

```
Single-level rotordynamic model, defined, 9.6.8: 62
                                                                  sealing against slurries, 3.1-3.5: 48
Single-plane balancing (formerly called static balancing),
                                                                  settling characteristics, 3.1-3.5: 45
      defined, 1.1-1.2: 73
                                                                  size of solids, 3.1-3.5: 44
Single-plane balancing, defined, 2.1-2.2: 37
                                                                  slurry characteristics. 3.1-3.5: 44
Single-screw pump (progressing cavity), 3.1-3.5: 14f.
                                                                  slurry effect on friction power, 3.1-3.5: 47
    range chart, 3.1-3.5: 11f.
                                                                  slurry effect on slip, 3.1-3.5: 47
Single-spring elastomeric bellows seals, 12.1-12.6: 80,
                                                                  speed effect on wear. 3.1-3.5: 48
                                                                  speed effects with slurries, 3.1-3.5: 46
      81f.
Sliding abrasion, 12.1-12.6: 58–60, 59f.
                                                                  testing and modeling, 3.1-3.5: 47
Sliding vane pumps (rigid), 3.1-3.5: 1f., 3t., 4t., 5f., 6f., 7,
                                                                  typical slurry system conversion curve, 3.1-3.5: 46f.
                                                                  wear consideration, 3.1-3.5: 47
                                                                  wear type, 3.1-3.5: 47
    design, 3.1-3.5: 7
    range chart, 3.1-3.5: 7f.
                                                              Slurry efficiency (\eta_m), defined, 12.1-12.6: 42
   variable capacity designs, 3.1-3.5: 7
                                                              Slurry head (H_m), defined, 12.1-12.6: 41
Slip (S), 6.1-6.5: 27, 6.6: 5, 8.1-8.5: 10
                                                              Slurry power (P_m), defined, 12.1-12.6: 42
   defined, 3.1-3.5: 19, 5.1-5.6: 18
                                                              Slurry pump types, allowable bearing housing vibration,
   definition and equation, 3.6: 2
                                                                     9.6.4: 9 f.
   hydraulic, defined, 4.1-4.6: 12
                                                              Slurry pumps, 9.6.1: 12–13, 12.1-12.6: 1
    magnetic, defined, 4.1-4.6: 12
                                                                  cantilevered wet pit pumps, 12.1-12.6: 1
Slurries
                                                                  close-coupled submersible pumps, 12.1-12.6: 1
                                                                  defined, 12.1-12.6: 1, 2
   characteristics of, 12.1-12.6: 45, 47f.
    defined, 12.1-12.6: 2, 38
                                                                  effect of slurries on performance, 12.1-12.6: 50-51,
    effect on performance, 12.1-12.6: 50-51, 51f.
    effect on performance, 7.8: 11
                                                                  elastomer pumps, 12.1-12.6: 1
   effects in piping systems, 12.1-12.6: 64, 65f.
                                                                  end suction, 20.3: 5 t.
   effects of, 12.1-12.6: 1
                                                                  hard metal pumps, 12.1-12.6: 1
   erosive mechanisms, 12.1-12.6: 58
                                                                  material types and discharge pressure for particle size,
   heterogeneous, 12.1-12.6: 45
                                                                     12.1-12.6: 2. 3f.
   homogeneous, 12.1-12.6: 45
                                                                  recommendations, defined, 12.1-12.6: 1
   nonsettling, 12.1-12.6: 40, 45
                                                                  requirements, defined, 12.1-12.6: 1
   particle impact, 12.1-12.6: 58, 59, 60, 60f.
                                                                  separately coupled, frame-mounted mechanical
   relationship of concentration to specific gravity, 12.1-
                                                                     configurations, 12.1-12.6: 1
      12.6: 45, 47f.
                                                                  types, 12.1-12.6: 1, 2f., 5f.-20f.
    service classes, 12.1-12.6: 61–62, 62f., 63t.
                                                              Slurry service classes, defined, 12.1-12.6: 43
    settling, 12.1-12.6: 48-50
                                                              Slurry, 6.1-6.5: 34
                                                              Small motor mounting plate structure, 9.6.8: 81f.
    settling, defined, 12.1-12.6: 41, 45
   sliding abrasion, 12.1-12.6: 58–60, 59f.
                                                              Sniffer inspection, of leakage, 9.6.9: 9, 10t.
   terminology and definitions, 12.1-12.6: 38-44
                                                              Sniffers. 9.6.5: 11
   types (schematic classification for industrial pipeline
                                                              Soft-start drivers, 6.1-6.5: 46
      applications), 12.1-12.6: 45, 48f.
                                                              Solids (in water), 2.3: 79
Slurry abrasivity, defined, 12.1-12.6: 43
                                                              Solids mixture d85 size, defined, 12.1-12.6: 40
                                                              Solids transport rate, 12.1-12.6: 45, 46f.
Slurry applications
    apparent viscosity of slurry versus shear rate, 3.1-3.5:
                                                              Solids-bearing liquids
                                                                  additional criteria for, 9.8: 9
    carrier liquid, 3.1-3.5: 44
                                                                  circular plan wet pit for, 9.8: 36–37, 37f.–39f.
    clearance provision for particle size, 3.1-3.5: 47
                                                                  cleaning procedures, 9.8: 34
   concentration of solids (by weight), 3.1-3.5: 44
                                                                  design principles, 9.8: 32-33
   corrosion effect on wear, 3.1-3.5: 47
                                                                  horizontal surfaces near inlet, 9.8: 34
                                                                  intake structures for. 9.8: 1. 32
   differential pressure versus pump input power, 3.1-3.5:
                                                                  rectangular wet wells for, 9.8: 40-41, 41f.
   flow velocity of slurries, 3.1-3.5: 46
                                                                  trench-type wet wells for, 9.8: 34-36
    hardness of solids, 3.1-3.5: 45
                                                                  vertical transitions, 9.8: 33, 33f.
    materials of construction, 3.1-3.5: 48
                                                              Solid-shaft driver, 2.1-2.2: 11, 2.3: 28 f., 28
                                                              Solids-handling pump types, allowable bearing housing
   operating sequences with slurries, 3.1-3.5: 47
   performance changes with slurries, 3.1-3.5: 46
                                                                     vibration, 9.6.4: 9 f.
    pressure relief provision, 3.1-3.5: 47
                                                              Solids-handling, end suction pump, 20.3: 5 t.
    pump design, 3.1-3.5: 48
                                                              Sommerfeld number, defined, 9.6.8: 62
```

Sound levels and sources, 2.3: 51	frequency response devices, 6.6 : 22
Spare parts, 12.1-12.6 : 95	instrument accuracy, 6.6 : 22
Special effect type pump icons, 1.1-1.2 : 81	maximum permissible short-term speed fluctuation,
Special test methods, 14.6 : 66	6.6 : 22
Specific energy (<i>E_j</i>)	revolution counter and timer method, 6.6 : 22
and particle size, 12.1-12.6 : 59	stroboscopes, 6.6 : 22
of impact wear, 12.1-12.6 : 59	tachometers, 6.6 : 22
Specific energy (E_{sp})	Speed versus torque curve example, 9.6.7 : 26f.
and particle size, 12.1-12.6 : 58–59	Speed vs. torque curves, 2.3 : 33, 35 f., 36 f.
defined, 12.1-12.6 : 44	for NEMA AC motors, 2.3 : 88 f.
of sliding energy, 12.1-12.6 : 58–59	for NEMA Design A-D motors, 2.3 : 89 f.
Specific gravity	Speeds
correction factor (C_{sg}), 12.1-12.6 : 53	and application details, 6.1-6.5 : 41
defined, 12.1-12.6 : 42	and liquid characteristics, 6.1-6.5 : 41
measurement of, 12.1-12.6 : 98	and pump design, 6.1-6.5 : 41
of slurry (S_m) , defined, 12.1-12.6 : 41	and type of duty, 6.1-6.5 : 42
of solids (S _s), defined, 12.1-12.6 : 41	basic speed ratings and formulas, 6.1-6.5 : 36–41
of various materials, 12.1-12.6 : 107–108	factors affecting operating speed, 6.1-6.5 : 41
relationship to concentration, 12.1-12.6 : 45, 47f.	high, 6.1-6.5 : 43
Specific gravity (s), 4.1-4.6 : 16	medium, 6.1-6.5 : 42
and performance tests, 3.6 : 11	slow, 6.1-6.5 : 42
defined, 3.6 : 8	Speeds above 600 rpm, 9.6.4 : 2, 3
Specific heat, 4.1-4.6 : 16	allowable bearing housing vibration, 9.6.4 : 7, 8 f., 9 f.
Specific speed (n _S), 1.1-1.2 : 8, 1.3 : 4, 5t., 6, 2.1-2.2 : 16,	Speeds of 600 rpm and below, 9.6.4 : 3
2.3: 1	allowable bearing housing vibration, 9.6.4 : 10 t.
and two-phase pumping, 1.3 : 125	Spiders
defined, 2.1-2.2 : 8	losses due to viscosity, 2.3 : 50
definition and formula, 2.3 : 3	Stability analysis, defined, 9.6.8 : 62
for vertical turbine diffuser-type pump, 20.3 : 3	Stability, 9.6.9 : 28
for volute-type pump, 20.3 : 3	defined, 9.6.5 : 56
US and metric units for, 2.1-2.2: 8	Staff interviews, 40.7 : 5
Specific weight (γ), defined, 3.6 : 7	Stainless steels, 12.1-12.6 : 67
Specific weight of water, defined, 6.6 : 2	Standard conditions of pressure and temperature, defined,
Specified condition point, defined, 1.1-1.2 : 70, 2.1-2.2 : 34,	3.1-3.5 : 23
12.1-12.6: 35	Standard dimensions, deviations from, 9.8 : 68–69
Spectrographic analysis	Standard tests, 11.6: 1
in lubricant analysis, 9.6.5 : 16	conditions, 11.6: 6
of metal particles from wear, 9.6.5 : 16	types, 11.6 : 4
Speed (n), 6.1-6.5: 24, 8.1-8.5: 9	Standards-setting organizations, 11.6 : 69
correction to specified speed (calculations), 3.6 : 14,	Starting torque, defined, 5.1-5.6 : 16
15 f.	Starting, 6.1-6.5 : 43
defined, 1.1-1.2 : 68, 2.1-2.2 : 31, 3.1-3.5 : 19, 3.6 : 2,	pump torque characteristics, 6.1-6.5 : 43
11.6 : 7, 12.1-12.6 : 33	pump torque requirements, 6.1-6.5 : 44
defined	soft-start drivers, 6.1-6.5 : 46
Speed (rpm) monitoring, 9.6.5 : 20, 9.6.9 : 14	with liquid bypass, 6.1-6.5 : 44, 45f.
alarm limits, 9.6.5 : 20	without liquid bypass, 6.1-6.5 : 44
by electronic counter, 9.6.5 : 20	Start-to-discharge pressure. See Cracking pressure
by revolution counter, 9.6.5 : 20	Start-up analysis, 2.3 : 32
by strobe light, 9.6.5 : 20	Start-up timers, 9.6.9 : 7
by tachometer, 9.6.5 : 20	Startup, 1.3 : 81, 12.1-12.6 : 92
condition indicators, 9.6.9 : 26t.	with closed discharge valve, 1.3 : 82
constant-speed systems, 9.6.5 : 20	with open discharge valve, 1.3 : 82
control limits, 9.6.9: 14	Static deflection of motor center of gravity, 9.6.8 : 76f.
frequency, 9.6.9 : 5t., 14	Static pressure tap, requirements, 40.6 : 16 f.
measurement methods, 9.6.5 : 20, 9.6.9 : 14	thick wall, 40.6 : 16 f.
variable-speed systems, 9.6.5 : 20	thin wall, 40.6 : 16 f.
Speed measurement electronic units, 6.6 : 22	Static pressure, 1.3: 1

Static suction lift (<i>I</i> _s), 6.1-6.5 : 31, 8.1-8.5 : 12	Submersible pumps, 9.8 : 95, 95f.
defined, 1.1-1.2 : 71, 2.1-2.2 : 35	Submersible sewage, end suction pump, 20.3 : 5 t.
Stationary bed, defined, 12.1-12.6: 42	Submersible, defined, 12.1-12.6: 3
Stator liner, 5.1-5.6 : 19	Subsurface vortices, 9.8 : 49, 52–53, 52f., 66, 67f.
Stator, defined, 3.1-3.5 : 16	Subsynchronous vibration, defined, 9.6.8 : 62
Steam turbines, 1.3: 175	Suction
Stiffness coefficients, defined, 9.6.8: 62	flooded, defined, 7.8: 4
Stilt-mounted metal baseplate, 9.6.2 : 9f.	lift, static, defined, 7.8: 4
Stock pump, flexibly coupled, single stage, foot mounted	lift, total, defined, 7.8: 4
pump, 1.1-1.2 : 14 f.	Suction bell design, 9.8: 93, 94f.
Stock, end suction pump, 20.3 : 5 t.	Suction bell length, 9.8: 93
Storage, 3.1-3.5 : 54, 8.1-8.5 : 16	Suction bell vanes, 9.8: 82, 83f.
Stork-type formed suction intake, 9.8 : 97, 98f.	Suction bells
Strain gauges, 9.6.5 : 5, 9.6.9 : 6	losses due to viscosity, 2.3: 50
Strainers, 2.3 : 65, 3.1-3.5 : 62	Suction cans (barrels), 2.3 : 42, 43 f.
defined, 5.1-5.6 : 15	Suction conditions, 2.1-2.2: 35, 6.1-6.5: 31, 8.1-8.5: 11
String tests, 14.6 : 54	definitions, 1.1-1.2: 71, 12.1-12.6: 35-36
influencing factors for calculating pump efficiency for	Suction performance, 1.3 : 78
different configurations, 14.6 : 54, 55 t.	Suction pipe or hose, 7.6 : 9
wire-to-water efficiency, 14.6 : 55	Suction piping, and avoiding accumulation of vapor, 2.3
Strip resistance temperature detectors (RTDs), 9.6.5 : 6	42
Stripping applications, 4.1-4.6 : 17	Suction port, defined, 3.1-3.5: 16
Strobe lights, 9.6.9 : 14	Suction pressure gauge, 7.6 : 9
Strobe lights, in speed (rpm) monitoring, 9.6.5 : 20	Suction pressure, 8.1-8.5 : 10, 9.6.9 : 11
Stroboscopes (in rotary speed measurement), 3.6 : 25	See Inlet pressure
Stroke (<i>L</i>), 6.1-6.5 : 24, 8.1-8.5 : 7	Suction recirculation, 1.3: 72
defined, 6.6 : 2, 7.6 : 4	Suction specific speed (S), 1.1-1.2: 8, 1.3: 4, 5t., 6, 2.1-
Strong vortex cores, 9.8 : 49	2.2 : 16, 2.3 : 1, 9.6.1 : 4–5, 7, 17
Structural analyses general, 9.6.8: 50, 56	and rotative speed limitations, 2.3: 57, 59 f., 60 f.
Structural analysis (stationary), 9.6.8 : 29	defined, 2.1-2.2 : 9, 18
Structural natural frequency is close to the maximum	definition and formula, 2.3: 5
range of operation rpm, 9.6.8: 74f.	for pump types, 2.1-2.2 : 1
Structural natural frequency is close to the minimum range	Symbols, 2.1-2.2 : 65, 65 t.
of operating rpm, 9.6.8: 75f.	US and metric units for, 2.1-2.2: 8
Stuffing box, defined, 3.1-3.5: 17	Suction system relationships, 6.1-6.5 : 51f., 52f., 54
Stuffing boxes, 3.1-3.5 : 32f.	Suction umbrellas, 9.8: 65
Submerged suction, 6.1-6.5 : 31, 8.1-8.5 : 11	Sump diameter Ds, 9.8: 20
defined, 1.1-1.2 : 71, 2.1-2.2 : 35, 12.1-12.6 : 35	Sump pumps, 1.3 : 3f., 137, 2.3 : 62, 63 f., 72 f.
Submergence for minimizing surface vortices, 9.8 : 44–46,	temperature concerns, 1.3: 144, 150
47f.	temperature range of pump assembly, 1.3: 144
Submergence, 2.3: 42	adapter, 1.3 : 138
Submersible motor efficiency (h_{mot}), definition and	alarms and controls, 1.3 : 145, 146f., 152
calculation, 11.6 : 46	applications, 1.3 : 141, 149
Submersible motor input power (P_{gr}), defined, 11.6 : 10	bearing bushing in adaptor, 1.3 : 138
Submersible motor integrity tests, 11.6 : 4, 29	bearing bushing, intermediate, 1.3 : 138
electrical continuity and resistance test, 11.6 : 30	bearing housing, 1.3 : 140, 147
electrical high-potential (hi-pot) test, 11.6: 32	bearing, outboard (antifriction), 1.3 : 147
electrical megohmmeter resistance test, 11.6: 31	bearing, outboard, 1.3 : 138
housing pressure test setup, 11.6: 29, 30f.	bearing, retainer, 1.3 : 140
housing vacuum test setup, 11.6: 30, 31f.	casing, 1.3 : 140, 147
miscellaneous electronic sensors, 11.6: 31	column, 1.3 : 140, 147
motor moisture sensor, 11.6 : 31	coupling, 1.3 : 140
motor winding resistance measurement, 11.6 : 30	discharge pipe, 1.3 : 140, 147
objective, 11.6 : 29	driver pedestal, 1.3 : 141, 149
setups and procedures, 11.6 : 29	driver, 1.3 : 140, 149
thermal switches, 11.6 : 30	friction loss, 1.3 : 141, 150
Submersible pump, definition, 40.6 : 9	impeller, 1.3 : 140, 149

Sump pumps — Continued	System blockage, 9.6.9: 5
lube piping, 1.3 : 140	System complexity and unit size, 9.6.8 : 11
lubrication cleanliness, 1.3: 145	System design, 12.1-12.6 : 64–65
materials, 1.3 : 144, 150	head and velocity requirements for nonsettling slurries,
minimum submergence, 1.3 : 142, 150	12.1-12.6 : 64, 65f.
mounting plate, 1.3 : 140, 149	head and velocity requirements for settling slurries,
nozzle loads, 1.3 : 146, 146f., 152, 152f.	12.1-12.6 : 64, 65f.
performance, 1.3 : 141, 149	typical constant concentration slurry pipeline friction
pit cover, 1.3 : 141, 149	loss characteristics, 12.1-12.6 : 64, 65f.
pressurized and vapor-tight construction, 1.3: 144,	System piping, 2.3 : 26
145f.	System pressure limitation, 1.3 : 71, 2.3 : 31
rate of flow vs. minimum submergence, 1.3 : 143f.,	System ratings, 4.1-4.6 : 20
151f.	System RCF vs. motor RCF and motor center of gravity
shaft, 1.3 : 141, 149	deflection component, 9.6.8 : 72f.
single casing volute cantilever (type VS5), 2.3 : 70, 72	Tachometers (in rotary speed measurement), 3.6 : 25
f.	Tachometers, 9.6.5 : 20, 9.6.9 : 14
single casing volute line shaft (type VS4), 2.3 : 62, 63	Tail rod, defined, 6.6 : 5
f.	Tailpipes and float control, 2.3 : 66, 68 f., 76
static head, 1.3 : 141, 149	Tanks, pump suction
strainer, 1.3 : 141	air or gas entrainment, 9.8 : 23
tailpipe and float control, 1.3 : 142f.	antivortex devices, 9.8 : 70f.
tailpipe, 1.3 : 142, 150	design features, 9.8 : 22–23
terminology, 1.3 : 138, 147	geometry, 9.8 : 22
thermal range of assembly, 1.3 : 150	horizontal, 9.8 : 69–70, 70f., 71f.
type VS4 (line-shaft) design, 1.3 : 138, 139f.	inflow and outflow configurations, 9.8 : 71f.
type VS5 (cantilever shaft design), 1.3 : 146, 148f.	multiple inlets or outlets, 9.8 : 25
Sump volume, 9.8 : 9	NPSH considerations, 9.8 : 25
active, 9.8 : 72	simultaneous inflow and outflow, 9.8 : 25
assumptions, 9.8 : 74	submergence, 9.8 : 23, 24f.
graph construction, 9.8 : 73	V and D for submergence calculation, 9.8 : 24, 25f.
inflow rate, 9.8 : 73	vertical, 9.8 : 69, 70f., 71f.
programmable controllers, 9.8 : 75, 75f.	Technical requirements for approval, 40.7 : 9
simple controller, 9.8 : 73–75, 73f.	data analysis and report generation, 40.7 : 11
Sun protection of pumping systems, 7.8 : 8	general, 40.7 : 9
Super-duplex stainless steels, 12.1-12.6 : 67 Supplementary data, 50.7 : 13, 14	maintenance, 40.7 : 10 measurements and reporting of data, 40.7 : 10
See also R/D/S field designations	personnel competencies, 40.7 : 9
Supported work processes and equipment types, 50.7 :	
11, 11t.	personnel training, 40.7 : 9
·	personnel, 40.7 : 9
Supply tank, 7.6 : 8 Surface roughness factors that determine surface finish,	pump test equipment, 40.7 : 10 pump test result uncertainty, 40.7 : 11
20.3 : 1	records maintenance, 40.7 : 11
Surface vortices, 9.8 : 65, 81	Temperature buildup, 1.3 : 72
application considerations, 9.8 : 46, 47f.	Temperature classification Tx, 2.4 : 9
approach-flow skewness, 9.8 : 44–45	Temperature considerations, 3.1-3.5 : 33
controlling parameters, 9.8 : 45–46	Temperature limits, defined, 5.1-5.6 : 16
submergence for minimizing, 9.8 : 44	Temperature measurement, 3.6 : 25, 6.6 : 23
Surface water intakes, issues with, 9.8 : 107	Temperature monitoring, 9.6.5 : 6, 9.6.9 : 7
Swirl	alarm limits, 9.6.5 : 8
in pump intake, 9.8 : 9	and pumped liquid temperature rise, 9.6.5 : 7
in suction pipe, 9.8 : 52–53	applications, 9.6.9 : 7
Swirl meter, 9.8 : 52, 53f.	by strip resistance temperature detectors (RTDs),
Synchronous drive, defined, 4.1-4.6 : 12	9.6.5 : 6
Synchronous magnet coupling, 4.1-4.6 : 13	by thermocouple probes, 9.6.5 : 6
Synchronous motor, defined, 9.6.8 : 63	condition indicators, 9.6.9 : 24t.
Synchronous vibration, defined, 9.6.8 : 63	control limits, 9.6.9 : 9
Synthetic rubber elastomers 12 1-12 6: 68	for liquid film hearings 9 6 5: 7

Temperature monitoring — Continued	Test setup, 7.6 : 8, 9f.
for magnetic couplings in sealless pumps, 9.6.5 : 7	Test tolerances, reasons for, 14.6 : 42
for motor winding, 9.6.5 : 6	and selection of pump test acceptance grades and
for rolling element bearings, 9.6.5 : 7	corresponding tolerance bands, 14.6 : 43
for seal faces, 9.6.5 : 7	casting cleaning, 14.6 : 43
for sealless pump liquids, 9.6.5 : 7	casting dimensions, 14.6 : 42
for temperature-sensitive liquids, 9.6.5 : 6	casting surface finish, 14.6 : 42
frequency, 9.6.9 : 5t., 9	effect of accessories on mechanical losses (power),
in sealless pumps, 9.6.9 : 8	14.6 : 43
means of monitoring, 9.6.9 : 7	machining dimensions, 14.6 : 43
means of, 9.6.5 : 6	machining finishes, 14.6 : 43
of temperature-sensitive liquids, 9.6.9 : 7	manufacturing variations, 14.6: 42
pumped liquid temperature rise, 9.6.9 : 8	Testing
shutdown limits, 9.6.5 : 8	by manufacturer, 12.1-12.6 : 97
Temperature of test fluid, 40.6 : 26	field tests, 12.1-12.6 : 97
bimetal or dial-type thermometers, 40.6 : 26	flowmeters in, 12.1-12.6 : 98
bulb-type thermometers, 40.6 : 26	head measurement, 12.1-12.6 : 98
resistance temperature detectors (RTDs), 40.6 : 26	hydrostatic tests, 12.1-12.6 : 96
thermocouples, 40.6: 26	instrumentation, 12.1-12.6 : 98
Temperature probes, in bearing wear monitoring, 9.6.5 :	objective, 12.1-12.6 : 96–97
21	optional slurry test, 12.1-12.6 : 96
Temperature rise in drive section, defined, 5.1-5.6 : 16	performance tests, 12.1-12.6 : 96
Temperature sensors, 9.6.9 : 7	power measurement, 12.1-12.6 : 98
Temperature, 4.1-4.6 : 15	specific gravity measurement, 12.1-12.6 : 98
internal rise, 4.1-4.6 : 24	test conditions, 12.1-12.6 : 97
Temperature-sensitive liquids, 9.6.9 : 7	wear tests, 12.1-12.6 : 97–98
Termination by HI, 40.7 : 6	Testing methodologies and standards, 40.7 : 2
of application, 40.7 : 6	Tests
of Participant, 40.7 : 7	and scope of standard, 5.1-5.6 : 48
Terminology definitions, 11.6 : 6	hermetic integrity, 5.1-5.6 : 49
subscripts, 11.6 : 4, 4t.	motor winding integrity, 5.1-5.6 : 50
symbols and units, 11.6 : 2	motor winding temperature rise, 5.1-5.6 : 51
symbols, 11.6 : 3t.	report, 5.1-5.6 : 53
Terminology, 3.6 : 1, 3 t. , 4.1-4.6 : 7, 6.6 : 1, 12.1-12.6 :	secondary containment, 5.1-5.6 : 50
31–44, 14.6 : 2, 2 t.	See Factory performance tests; Hydrostatic pressure
hermetic integrity (optional), 4.1-4.6 : 27	testing; Mechanical test; Model tests for pump
See also Nomenclature Tests, 4.1-4.6 : 26	acceptance
torque confirmation (optional), 4.1-4.6 : 28	See NPSH tests; Optional tests; Performance tests;
Terms and definitions, 40.6 : 1	Pump acceptance tests; String tests;
Terms, 1.3 : 4, 5t.	Thermodynamic test method
Terms, pump application, 1.1-1.2 : 65 t.	types, 5.1-5.6 : 48
Test arrangements, 40.6 : 13	The Association For Manufacturing Technology, 5.1-5.6 :
correct flow-measuring conditions, 40.6 : 13	Theoretical loss analysis explanations 0.67, 19
downstream measuring section, 40.6 : 13	Theoretical loss analysis explanations, 9.6.7 : 18
general, 40.6 : 13	power balance and losses, 9.6.7 : 18
measurement principles to determine pump total head,	Thermal effects, 9.6.7 : 20
40.6: 13	Thermocouple probes, 9.6.5 : 6, 9.6.9 : 7
Test pressure, defined, 12.1-12.6 : 37	Thermodynamic test method, 14.6 : 66
Test procedures, 40.6 : 10	Thermometer or temperature sensor, 7.6 : 9
arrangements, 40.6 : 10	Thermoplastics types, 9.1-9.5 : 25
conditions, 40.6 : 10	Thermosetting polymers chemistries, 9.1-9.5 : 25
equipment, 40.6 : 10	manufacturing processes, 9.1-9.5 : 25
general, 40.6 : 10	Thixotropic fluid, defined, 3.1-3.5 : 40, 40f.
procedure, 40.6 : 10	Threaded suction cases losses due to viscosity, 2.3 : 50
speed of rotation, 40.6 : 11	Throat area, 1.3: 1
test report, 40.6 : 10	Thrust bearings, 2.3 : 27, 9.6.9 : 7
Test report form, 9.6.4 : 11, 12	

Time periods for calibration of test instruments, 40.6 : 27 instrument recalibration maximum intervals, 40.6 : 27 t. recalibration interval, 40.6 : 27	Total outlet head (h_d) defined, 11.6 : 9 Total pump length, 2.1-2.2 : 26, 27 f. Total suction head (h_s), closed suction test, defined, 1.1-
Timed screw pumps, 3.1-3.5 : 3t., 4t., 5f., 6f.	1.2 : 70
on baseplate, 3.1-3.5 : 28f.	Total suction head (h_s) , closed suction, defined, 2.1-2.2 :
range chart, 3.1-3.5 : 12f.	32, 12.1-12.6 : 34
two-screw, 3.1-3.5: 14f.	Total suction head (h_s) , open suction, defined, 1.1-1.2 : 69,
Time-independent non-Newtonian fluids, defined, 3.1-3.5:	2.1-2.2 : 32, 12.1-12.6 : 34
40	Total suction lift, 6.1-6.5 : 31, 8.1-8.5 : 12
Timers, 9.6.9 : 7	defined, 6.6 : 6
Timing gear, defined, 3.1-3.5 : 17	Total suction pressure, 6.1-6.5 : 27
Tolerance, 9.6.9 : 28	defined, 6.6 : 6
Tolerance, defined, 9.6.5 : 56	Toxic liquids or vapors, 8.1-8.5 : 16
Torque	Transducers pressure, 9.6.9 : 11
closed valve condition, 2.3 : 34, 35 f.	velocity, 9.6.9 : 12
defined, 5.1-5.6 : 16	Transducers, 7.8 : 12–13, 9.6.4 : 3
open valve condition, 2.3 : 34	accelerometer probes, 9.6.4 : 25 handheld, 9.6.4 : 23, 23 f., 24
See also Speed vs. torque curves starting (locked rotor, breakaway), 2.3: 88	magnetic mounts, 9.6.4 : 23, 23 f., 24
Torque and torque curve, 1.3 : 85, 85f.	mounting, 9.6.4 : 3, 4 f., 23, 23 f.
Torque confirmation test acceptance criteria, 4.1-4.6 : 29	permanent rigid mounts, 9.6.4 : 23, 23 f.
calculations, 4.1-4.6 : 28	proximity probes, 9.6.4 : 25
decoupling torque, 4.1-4.6 : 29	sensitivity of different mountings, 9.6.4 : 23, 23 f.
object, 4.1-4.6 : 28	types, 9.6.4 : 25
parameters, 4.1-4.6 : 28	velocity probes, 9.6.4 : 25
procedure, 4.1-4.6 : 29	Transfer applications, 9.6.9 : 13
records, 4.1-4.6 : 28	Transient start-up evaluation, defined, 9.6.8 : 63
scope, 4.1-4.6 : 28	Transition region, defined, 12.1-12.6: 43
Torque meter, 9.6.5 : 5, 9.6.9 : 5	Transport and storage section, 1.4 : 12, 2.4 : 12
Torque vs. speed curves, 1.3 : 83, 86f., 87f., 89f., 91f.	disposal of packaging materials, 1.4: 15, 2.4: 15
Torsional analysis, 9.6.8 : 32	electrical, 1.4 : 38
Torsional forced response analysis of electric synchronous	long-term storage, 1.4: 14, 2.4: 15
motor-coupling-pump shaft train, 9.6.8: 55	protective skid warning, 2.4: 13
analysis, 9.6.8 : 55	receipt, inspection, and damage reporting, 1.4: 12, 2.4:
interpretation of results, 9.6.8 : 55	13
model, 9.6.8 : 55	recommended storage environment, 1.4: 13, 2.4: 13
validation, 9.6.8 : 56	rigging and lifting instructions, 1.4: 12, 2.4: 12
Torsional forced response analysis of motor-coupling-	short-term storage, 1.4 : 13, 2.4 : 14
pump shaft train, 9.6.8 : 55	storage, 1.4 : 13, 2.4 : 13
analysis, 9.6.8 : 55	transport and handling requirements, 1.4 : 12, 2.4 : 12
interpretation of results, 9.6.8 : 55	uncontrolled storage moisture protection, 1.4 : 13, 2.4 :
model, 9.6.8 : 55	14
validation, 9.6.8 : 55	unpacking, 1.4 : 13, 2.4 : 13
Torsional rotordynamic analyses, 9.6.8 : 49, 55	Transport applications, 12.1-12.6 : 45
defined, 9.6.8 : 63 Torsional stiffness <i>K</i> , defined, 9.6.8 : 41	solids transport rate, 12.1-12.6 : 45, 46f.
Torsional vibration, defined, 9.6.8 : 63	Transverse mass moment of inertia, defined, 9.6.8 : 63 Trench-type intakes, 9.8 : 21–22
Total differential pressure (p_H) , 6.1-6.5 : 28	approach flow, 9.8 : 22
defined, 6.6 : 6, 7.6 : 6	centerline spacing, 9.8 : 22
Total discharge head (h_d) , defined, 1.1-1.2 : 70, 12.1-12.6 :	end wall clearance, 9.8 : 22
34	floor clearance, 9.8 : 22
Total discharge pressure (p_d), defined, 7.6 : 6, 6.1-6.5 : 27,	inlet conduit elevation, 9.8 : 22
6.6 : 6	orientation, 9.8 : 21
Total gap, defined, 4.1-4.6 : 9, 5.1-5.6 : 16	wet wells, 9.8 : 21, 21f.
Total head (<i>H</i>) [H_{tx}], defined, 1.1-1.2 : 70, 11.6 : 9	width, 9.8 : 22
Total inlet head (h_s) , defined, 11.6 : 9	Trench-type wet wells
Total input power (P _{max}) defined 3.6: 7.6.6: 7	anti-rotation haffle and vanes 98:36

Trench-type wet wells — Continued	and progressing cavity pumps, 1.3: 124
approach flow, 9.8: 35	and screw-type pumps, 1.3 : 124, 124f.
approach pipes, 9.8 : 77–79, 77f., 78t.–79t.	and self-priming pumps, 1.3 : 123
auxiliary storage, 9.8: 76-77	and specific speed, 1.3: 125
cleaning procedure, 9.8: 35	and top suction impellers, 1.3: 125, 125f.
constant-speed pumps in, 9.8: 76	effect of gas on performance, 1.3: 124, 125f.
design examples, 9.8 : 80	gas and liquid applications, 1.3: 122, 122f.
inlet floor clearance, 9.8 : 35	in biological fluid processing, 1.3 : 122
inlet splitters and cones, 9.8 : 36	in oil production, 1.3 : 122
inlet transition, 9.8 : 35	inducers or inlet boosters, 1.3: 124
intake basin entrance conditions, 9.8: 76–80, 77f., 78t.,	special features, 1.3 : 124
79t.	Two-plane balancing (formerly called dynamic balancing),
lining, 9.8 : 80	defined, 1.1-1.2 : 73, 2.1-2.2 : 37
objectives, 9.8 : 34–35	Type B forms, 14.6 : 73
performance enhancements for, 9.8 : 81–86, 82f.–84f.	Type I test, 3.6 : 1
transition manhole, 9.8 : 80	records, 3.6 : 13
variable-speed pumps in, 9.8 : 76	Type I, 3.6 : 1, 13
Trending, 9.6.9 : 28	Type II test, 3.6 : 1
defined, 9.6.5 : 56	records, 3.6 : 13
Trip delay timers, 9.6.9 : 7	Type II, 3.6 : 1, 13
Troubleshooting	Type III test, 3.6 : 1
excessive power consumption, 5.1-5.6 : 46	acceptable deviation of dependent test quantities from
insufficient differential pressure, 5.1-5.6 : 45	specified values for Type III and Type IV testing,
insufficient discharge flow, 5.1-5.6 : 44	3.6 : 8
loss of suction, 5.1-5.6 : 45	records, 3.6 : 13
no discharge flow, 5.1-5.6 : 44	reports, 3.6 : 16
See Malfunctions, causes and remedies	Type III, 3.6 : 1, 8, 13
Troubleshooting guide section, 1.4 : 35, 2.4 : 40	Type IV test, 3.6 : 1
bearing operation temperature, 1.4 : 38	acceptable deviation of dependent test quantities from
bearing temperature, 2.4 : 43	specified values for Type III and Type IV testing,
electrical, 1.4 : 38, 2.4 : 43	3.6 : 8
flow, 1.4 : 36, 2.4 : 41	records, 3.6 : 13
high power consumption, causes, 1.4 : 37, 2.4 : 42	reports, 3.6 : 16
hydraulic performance, 2.4 : 40 instrument locations, 1.4 : 38 f.	Type IV, 3.6 : 1, 8, 13 witnessing of, 3.6 : 8
insufficient discharge, causes, 1.4 : 36, 2.4 : 41	Type number (<i>K</i>), 2.1-2.2 : 16
insufficient pressure, causes, 1.4 : 35, 2.4 : 40	defined, 2.1-2.2 : 18
lack of discharge, causes, 1.4 : 36, 2.4 : 41	Types of dynamic analyses for pumps and pump trains,
loss of suction, causes, 1.4 : 36, 2.4 : 40	9.6.8: 11
mechanical issues, 1.4 : 37, 2.4 : 43	Types of tests hydrostatic, 6.6 : 1
noise, 2.4 : 43	net positive suction head, 6.6 : 1
power, 1.4 : 37, 2.4 : 42	performance, 6.6 : 1
pressure, 1.4 : 35, 2.4 : 40	Typical performance curve for rotodynamic pumps of lowe
vibration, 1.4 : 37, 2.4 : 43	specific speed design, 2.1-2.2 : 34 f.
Troubleshooting/system performance consideration	Typical range of stated motor reed frequency versus CG
(metering pumps)	height, 9.6.8 : 79f.
pump, 7.8 : 16	Typical range of stated motor reed frequency versus
system and piping, 7.8 : 16–17	maximum motor diameter or flange, 9.6.8 : 80f.
Turbine flowmeters, 9.6.9 : 13	Typical range of stated motor reed frequency versus motor
in rate-of-flow monitoring, 9.6.5 : 19	weight, 9.6.8 : 79f.
Turbines. See Pump as turbine (PAT); Regenerative	Typical range of stated motor reed frequency versus
turbine pumps; Steam turbines	torque, 9.6.8 : 78f.
Turbulent region, defined, 12.1-12.6: 42	Typical swirl meter, 9.8 : 53f.
Two-phase pumping applications, 1.3 : 122, 122f.	Typical vertical pump impeller types with rings, 2.1-2.2: 17
and gas vents, 1.3 : 125, 125f.	f.
and helico-axial pumps, 1.3: 123, 123f.	Typical vibration signature of discharge head/driver
and open impellers 1.3: 125	support with driver 9 6 8: 73f

Ultrasonic flowmeters, in rate-of-flow monitoring, 9.6.5 : 19	Variable speed operation, 9.6.8 : 43
Ultrasonic meters, 9.6.9 : 13	Variable-speed pumps, in trench-type wet wells, 9.8 : 76
Ultrasonic thickness measurement (UTM), 9.6.5 : 9	Variable-speed systems, 9.6.9 : 14
UN Economic Commission for Europe Information Service,	V-belts, 3.1-3.5 : 59, 60f.
5.1-5.6 : 48	Velocity head (h_v) , defined, 1.1-1.2 : 69, 2.1-2.2 : 32, 11.6 :
Unbalance response analysis, defined, 9.6.8 : 63	8, 12.1-12.6 : 33
Unbalance, defined, 9.6.8 : 63	Velocity pressure (p _v), 6.1-6.5 : 28, 8.1-8.5 : 11
Uncertainty values, 9.6.8 : 13t.	definition and equation, 3.1-3.5 : 19, 3.6 : 5, 6.6 : 5
Uncertainty, defined, 9.6.8 : 63	Velocity profiles, 9.8 : 53, 57
Unconfined intakes, 9.8 : 31f.	Velocity transducers, 9.6.5 : 15, 9.6.9 : 12
cross-flow velocities and pump location, 9.8: 30	Velocity, 8.1-8.5 : 10
debris and screens, 9.8: 31	Venturi flowmeter example
submergence, 9.8 : 31–32	calculation of individual device uncertainty and total
Undamped torsional analysis, defined, 9.6.8 : 63	uncertainty, 14.6 : 82 t.
Undamped torsional natural frequency analysis of (electric	calculation of individual device uncertainty and total
asynchronous) motor-coupling-pump shaft train,	uncertainty, 40.6 : 41 t.
9.6.8 : 49	calibration data and analysis, 14.6 : 82 t.
analysis, 9.6.8 : 50	calibration data and analysis, 40.6 : 41 t.
interpretation of results, 9.6.8 : 50	differential pressure transducer calibration data
methodology, 9.6.8 : 49	analysis, 14.6 : 81 t.
model, 9.6.8 : 49	differential pressure transducer calibration data
validation, 9.6.8 : 50	analysis, 40.6 : 40 t.
Unit conversion factors, 11.6 : 67t., 14.6 : 84, 84 t. , 40.6 :	differential pressure transducer calibration data, 14.6 :
28 t.	81 t.
Unit conversions, 40.6 : 28	differential pressure transducer calibration data, 40.6 :
Units of measure, 50.7 : 12, 21	40 t.
Unlined type, defined, 12.1-12.6 : 4	differential pressure transducer information, 14.6 : 80 t.
Untimed screw pumps, 3.1-3.5 : 3t., 4t., 5f., 6f., 29f.	differential pressure transducer information, 40.6 : 39 t.
applications, 3.1-3.5 : 13	output signal vs. pressure value, 14.6 : 81 f.
description, 3.1-3.5 : 12	output signal vs. pressure value, 40.6 : 40 f.
materials of construction, 3.1-3.5 : 13	signal measurement device information, 14.6 : 80 t.
range chart, 3.1-3.5 : 13	signal measurement device information, 40.6 : 39 t.
three-screw double end, 3.1-3.5 : 14f.	venturi information - BIF 2-in s/n 12345, 14.6 : 80 t.
three-screw single end, 3.1-3.5 : 14f.	venturi information - BIF 2-in s/n 12345, 40.6 : 39 t.
Upthrust	Venturi meters, 9.6.9 : 13
in runout condition, 2.3 : 42	Vertical cantilever sump pumps. See Sump pumps
US customary units, 1.3 : 4, 5t.	Vertical double suction, short setting, open line shaft
UV protection of pumping systems, 7.8 : 8	(VS2), 2.1-2.2 : 7 f.
UV protection, 7.8 : 8	Vertical double suction, single or multistage barrel or can
v. See Plunger or piston speed Valve seat area, 6.1-6.5 :	pump (VS7), 2.1-2.2 : 13 f.
29, 30f.	Vertical end suction OH3A pump, 1.1-1.2 : 20 f.
v. See Velocity	Vertical end suction OH5A pump, close coupled, built
Vacuum and/or heat control NPSH test with closed loop,	together, 1.1-1.2 : 23 f.
6.6 : 15f.	Vertical in-line casing diffuser pump (VS8), 2.1-2.2 : 15 f.
Valve gear adjustments, 8.1-8.5 : 7, 7f.	Vertical in-line pumps (ANSI/ASME B73.2)
Valve gear, 8.1-8.5 : 6	adjustment factor basis, 9.6.2: 14
Valve plate type liquid end, 8.1-8.5 : 4f., 4	applicable loads, 9.6.2 : 12
Valve pot type, 8.1-8.5 : 4, 4f.	assessment of applied nozzle loads, 9.6.2: 12
Valves bypass, 9.6.9 : 8	coordinate system, 9.6.2 : 11f.
recirculation, 9.6.9 : 8	criteria for loading allowances, 9.6.2: 11
relief, 9.6.9 : 8	definitions, 9.6.2 : 11
Valves, 7.8 : 16	Equation Set 6, 9.6.2 : 12t.
Vane pass frequency, defined, 9.6.8 : 63	flange stress, 9.6.2 : 11
Vane pumps, 3.1-3.5 : 31f.	material specifications used in Table 9.6.2.2.5.2, 9.6.2:
Vapor pressure, 9.6.9 : 8	14t.
defined, 3.1-3.5 : 41	maximum axial force, 9.6.2: 12
Variable speed curve, 1.3 : 68, 68f.	maximum bending and torsional moments, 9.6.2: 12

```
Vertical in-line pumps (ANSI/ASME B73.2) — Continued
                                                             Vertical turbine pumps, 20.3: 5 t.
   maximum forces and moments to assess applied
                                                             Vertical turbine short set pumps (VS1 and VS2)
      loads, 9.6.2: 13t.
                                                                 acceptance criteria for evaluation of pump design.
   maximum shear force, 9.6.2: 12
                                                                    9.6.2: 23
   maximum stresses in nozzles and flanges, 9.6.2: 11
                                                                 definitions, 9.6.2: 19
                                                                 maximum permissible forces and moments, 9.6.2: 19
   metallic pump temperature and material adjustment
      values. 9.6.2: 15
                                                                 methodology, 9.6.2: 19
   nomenclature. 9.6.2: 11
                                                                 nozzle loads for above pump base (floor) discharge
   pressure/temperature, 9.6.2: 12
                                                                    pumps, 9.6.2: 20f.
                                                                 nozzle loads for below pump base (floor) discharge
   scope, 9.6.2: 10
   temperature and material adjustment factors. 9.6.2: 14
                                                                    pumps, 9.6.2: 21f.
Vertical motor reed critical frequency considerations, 9.6.8:
                                                                 scope, 9.6.2: 18
                                                             Vertical, axial flow impeller (propeller) type (enclosed line
Vertical motor structures, 9.6.8: 69f.
                                                                    shaft) below-floor discharge configuration (VS3),
Vertical multistage in-line pumps (VS8) and radial thrust,
                                                                    2.1-2.2: 8 f.
      2.3: 7
                                                             Vertical, axial flow impeller (propeller) type (enclosed line
Vertical pumps, 6.1-6.5: 1, 2f.
                                                                    shaft) below-floor discharge configuration (VS3),
   acceptable vibration levels at top of pump, 9.6.4: 20 f.
                                                                    2.1-2.2: 8 f.
   background of recommendations, 9.6.4: 21
                                                             Vertical, multistage volute (double casing) barrel or can
   characteristic curves, 2.1-2.2: 20 f.
                                                                    pump (VS7a), 2.1-2.2: 14 f.
   construction, 2.1-2.2: 21
                                                             Vertical, multistage, submersible pump (VS0), 2.1-2.2: 3 f.
   guidelines for motor vibration, 9.6.4: 20
                                                             Vertical, single, or multistage diffuser (double casing)
   vibration measurement point, 9.6.4: 20
                                                                    barrel or can pump (VS6), 2.1-2.2: 12 f.
Vertical single or multistage, short setting, open line shaft
                                                             Vertically suspended (VS) type, 1.3: 1, 110, 112f.
      (VS1), 2.1-2.2: 5 f.
                                                             Vertically suspended pump types and classifications, 2.1-
Vertical structure natural frequency considerations, 9.6.8:
                                                                    2.2: 2 f.
                                                             Vertically suspended pumps, 1.1-1.2: 4 f., 80
   graphical depiction of vertical pump/motor structure
                                                                 defined, 9.6.8: 27
      reed frequency versus motor reed frequency, 9.6.8:
                                                                 regenerative turbine icons, 2.1-2.2: 80
                                                             Vibration
   introduction, 9.6.8: 68
                                                                 in runout condition. 2.3: 41
   job-specific motor reed frequency values for dynamic
                                                             Vibration acceptance tests, 9.6.4: 4
      analysis, 9.6.8: 72
                                                                 factory acceptance test, 9.6.4: 6
   motor reed frequency properties, 9.6.8: 68
                                                                 field acceptance test. 9.6.4: 6
   practical considerations - vertical pump/motor
                                                                 field test conditions. 9.6.4: 7
      structures, 9.6.8: 72
                                                                 general conditions, 9.6.4: 6
   reed frequency characteristics of vertical structures
                                                                 installation and operating conditions, 9.6.4: 6
      involving motors, 9.6.8: 68
                                                                 pump locations for, 9.6.4: 6
   use of motor reed frequency properties in a vertical
                                                                 report form, 9.6.4: 11, 12
      pump/motor structure reed frequency calculation,
                                                             Vibration measurements and allowable values, 9.6.4: 1
      level 1 analysis, 9.6.8: 69
                                                             Vibration monitoring, 9.6.9: 12
    use of motor reed frequency properties in level 2 or
                                                                 applications, 9.6.9: 12
      level 3 analyses, 9.6.8: 70
                                                                 condition indicators, 9.6.9: 24t.
Vertical structures, managing vibration, 9.6.4: 19
                                                                 control limits, 9.6.9: 13
Vertical submersible turbine pumps (VSO)
                                                                 frequency, 9.6.9: 5t., 12
    and radial thrust, 2.3: 7
                                                                 means of monitoring, 9.6.9: 12
Vertical tank, 9.8: 69, 70f., 71f.
                                                                 measurement practice, 9.6.9: 12
                                                             Vibration source identification, 9.6.4: 22
Vertical turbine pumps
    example assessments of applied nozzle loads (20-in
                                                             Vibration test. 11.6: 4. 32
      mixed flow, above pump base steel discharge, 150
                                                                 acceptance criteria, 11.6: 33, 34 f.
      psi, 100 °F), 9.6.2: 35
                                                                 objective, 11.6: 32
   example assessments of applied nozzle loads (20-in
                                                                 procedure, 11.6: 33
                                                                 pump support, 11.6: 32
      mixed flow, aboveground stainless-steel type 316
      discharge, 150 psi, 500 °F), 9.6.2: 35
                                                                 records and report, 11.6: 33
Vertical turbine pumps (VTPs), vertically suspended and
                                                                 setup, 11.6: 32
      radial thrust, 2.3: 7
                                                                 transducer location, 11.6: 33 f., 33
Vertical turbine pumps and axial thrust, 2.3: 9
                                                                 vibration instrumentation, 11.6: 33
```

Vibration, factors affecting	Vortexing
abrasive fluids and residual mechanical unbalance of	in runout condition, 2.3: 41
rotating parts, 9.6.4 : 17	VS pump structural natural frequency analysis (modal
hydraulic disturbances, 9.6.4 : 18	FEA), 9.6.8 : 52
hydraulic resonance in piping, 9.6.4 : 18	analysis, 9.6.8 : 52
mechanical problems, 9.6.4 : 17	interpretation of results, 9.6.8 : 52
pump and driver natural frequency and resonance,	methodology, 9.6.8: 52
9.6.4 : 17	model, 9.6.8 : 52
residual mechanical unbalance of rotating parts, 9.6.4 :	validation, 9.6.8 : 53
13	VS4 line-shaft design sump pump alarms and controls,
rigidity, 9.6.4 : 19	2.3 : 69, 71 f.
Violations, 40.7: 8	application, 2.3 : 62, 66
corrected, 40.7: 8	design, 2.3 : 62, 63 f.
uncorrected, 40.7 : 9	friction losses due to viscosity, 2.3 : 66
Viscosity defined, 3.1-3.5 : 37	lubrication cleanliness, 2.3 : 69
effect on pump and system performance, 3.1-3.5 : 40,	materials components, 2.3 : 68
41f.	nozzle loads, 2.3 : 70, 71 f.
of common fluids, 3.1-3.5 : 37, 37t. units, 3.1-3.5 : 37	performance characteristics, 2.3 : 66 rate of flow vs. minimum submergence, 2.3 : 66, 67 f.
viscous response types, 3.1-3.5 : 38	static component of, 2.3 : 66
Viscosity low, 9.6.9 : 8	tailpipe and float control, 2.3 : 66, 68 f.
and power monitoring, 9.6.9 : 6	temperature concerns, 2.3 : 69
and rotary pump performance, 9.6.9 : 8	temperature contents, 2.3 : 69 temperature range of pump assembly, 2.3 : 69
and temperature monitoring, 9.6.9 : 7	terminology, 2.3 : 64
Viscosity, 4.1-4.6 : 15, 7.8 : 11–12, 9.6.7 : 1	vaporproof/pressurized design, 2.3 : 69, 70 f.
and head, 9.6.7 : 1	VS4-VS5. See Pump type VS4-Pump type VS5
and NPSH3, 9.6.7 : 1	VS5 cantilever shaft design sump pump
and power, 9.6.7 : 1	alarms and controls, 2.3: 76
and rate of flow, 9.6.7 : 1	application, 2.3: 70, 72 f., 74
high, 4.1-4.6 : 16	design, 2.3: 70, 72 f.
low, 4.1-4.6 : 16	friction losses due to viscosity, 2.3: 74
resulting rotodynamic pump performance variation,	materials components, 2.3: 76
9.6.7 : 1	nozzle loads, 2.3 : 77, 77 f.
variable, 4.1-4.6 : 16	performance characteristics, 2.3: 74
Viscous correction factors for head, rate of flow, and	rate of flow vs. minimum submergence, 2.3 : 74, 75 f.
efficiency, 9.6.7 : 2	static component of, 2.3: 74
Viscous effects, 9.8 : 50	tailpipe and float control, 2.3 : 76
Viscous fluid, defined, 9.6.7 : 1	temperature concerns, 2.3 : 76
Viscous liquid effects, 1.3 : 81	temperature range of pump assembly, 2.3 : 76
Viscous liquid performance correction limitations, 9.6.7 : 4	terminology, 2.3 : 73
Visual inspection, of leakage, 9.6.9 : 9, 10t.	Wall clearance C _w , 9.8 : 20
Vocabulary, standardization of, 50.7 : 2	Watches, caution regarding, 4.1-4.6 : 23
Volatile light hydrocarbons, 9.6.9 : 9	Water compressibility, 6.1-6.5 : 58t., 59t., 61
Volatile organic compounds (VOCs), 9.6.9 : 9	Water cut (WC), defined, 3.1-3.5 : 23
Volume (standard units), defined, 6.6 : 2, 7.6 : 4 Volumetric efficiency (<i>h_v</i>), 6.1-6.5 : 29, 9.6.9 : 8	Water efficiency (η_w) , defined, 12.1-12.6 : 42
calculating for hydrocarbons, 6.1-6.5 : 61–65	Water hammer analysis, 2.3 : 32 controlling, 2.3 : 32
calculating for hydrocarbons, 6.1-6.5 : 57, 58t., 59t.	defined, 2.3 : 32
defined, 6.6 : 7, 7.6 : 7	Water hammer, 1.3 : 82
water compressibility, 6.1-6.5 : 58t., 59t., 61	defined, 1.4 : 30
Volumetric losses, 9.6.7 : 19	Water head (H_w) , defined, 12.1-12.6 : 41
Voluntary termination, 40.7 : 6	Water horsepower. See Pump output power
prior to approval, 40.7 : 6	Water power (P_w) , defined, 12.1-12.6 : 42
Vortex (recessed impeller) pumps, 1.1-1.2 : 7	Water/wastewater pumps, 9.6.1 : 10–11, 11t.
Vortex pump, 1.3 : 14	Water-lubricated pumps. See Open line-shaft pumps
Vortex shedding, defined, 9.6.8 : 63	WC. See Water cut
Vortex suppression devices, 9.8 : 45	Wear coefficient (W_c), defined, 12.1-12.6 : 44

Wear considerations erosion–corrosion, 12.1-12.6: 61 particle impact, 12.1-12.6: 58, 59, 60, 60f. pump wear, 12.1-12.6: 61–62 sliding abrasion, 12.1-12.6: 58–60, 59f. Wear life, 12.1-12.6: 63 and best efficiency point, 12.1-12.6: 64, 64t. and proper pump application, 12.1-12.6: 63–64, 63t. and radial shape of discharge casing, 12.1-12.6: 64 and width of discharge casing, 12.1-12.6: 64 Wear rings, 1.3: 13 Weber number, 9.8: 50 Wet critical speed analysis, defined, 9.6.8: 63 Wet end. See Liquid end assembly Wet wells for solids-bearing liquids cleaning procedures, 9.8: 34 design principles, 9.8: 32–33 horizontal surfaces near inlet, 9.8: 34 vertical transitions, 9.8: 33, 33f. wet-well volume, 9.8: 34 Wetted materials of construction, 12.1-12.6: 65 austenitic stainless steels, 12.1-12.6: 67 butyl, chlorobutyl, bromobutyl, 12.1-12.6: 67 chromium-molybdenum iron, 12.1-12.6: 67 chromium-nickel (NiHard) iron, 12.1-12.6: 67 compromise between erosion and corrosion resistance, 12.1-12.6: 67 duplex stainless steels, 12.1-12.6: 67 elastomers bonded to metals, 12.1-12.6: 66 elastomers, 12.1-12.6: 67, 95 high elastic interval 20.1 (20.5) high elastic inte	irons, 12.1-12.6: 67 martensitic stainless steels, 12.1-12.6: 67 metal specification equivalents, 12.1-12.6: 106–108 metals, 12.1-12.6: 66 natural rubber, 12.1-12.6: 67–68 nitrile, 12.1-12.6: 68 polychloroprene (neoprene), 12.1-12.6: 68 polyurethane, 12.1-12.6: 67 super-duplex stainless steels, 12.1-12.6: 67 synthetic rubber elastomers, 12.1-12.6: 68 When analysis is recommended, 9.6.8: 11 Wire-to-water efficiency, 11.6: 46 compared with pump efficiency, 11.6: 45 Work process designations, 50.7: 12, 13 Work process, 9.6.8: 2t. Working pressure $(p_d)[p_{2 \max op}]$, defined, 1.1-1.2: 72, 2.1- 2.2: 37, 12.1-12.6: 37 XML as basis for EDE, 50.7: 1, 8 defined and described, 50.7: 2 See also AEX XML Schema XPaths, 50.7: 28 deployment requirements and constraints, 50.7: 28 XSD file names and associated namespaces, 50.7: 27 Y-strainers, 7.8: 16 Z. See Elevation head Zebra/quagga mussel, 9.8: 108 η . See Pump mechanical efficiency η_{P} . See Pump mechanical efficiency η_{P} . See Pump wolumetric efficiency η_{V} . See Pump volumetric efficiency η_{V} . See Volumetric efficiency λ , determination, 40.6: 18
hard irons, 12.1-12.6 : 67, 95 high-chromium iron, 12.1-12.6 : 67	
hydrogenated nitrile, 12.1-12.6 : 68	