Table of Contents

Foreword ... ix
Executive Summary ... xiii

Chapter • One
Pump Fundamentals, 1

1.1 Introduction ... 1
1.2 How a Rotodynamic (Centrifugal [Radial Flow], Mixed Flow, and Axial Flow) Pump Works .. 1
1.3 Pump Selection Considerations 7
1.4 Understanding the Pump’s Performance Curve 7
1.5 Pump Suction Intake Considerations 22
1.6 Pump Affinity Rules ... 23
1.7 Operation of Pumps .. 23
1.8 Key Takeaways ... 24

Chapter • Two
Positive Displacement Pump Fundamentals, 27

2.1 Introduction ... 27
2.2 Pump and System Interaction 32
2.3 Improving Performance of Existing Systems 38
2.4 Optimizing New Designs .. 41
2.5 Calculating Cost of Ownership 47
2.6 Key Takeaways ... 47

Chapter • Three
Common Pump Drivers and Variable Speed Drives, 49

3.1 Introduction ... 49
3.2 Induction Motors .. 50
3.3 Synchronous Motors .. 62
3.4 Permanent Magnet (PM) Motors 67
Table of Contents

3.5 Considerations for Electric Motors to Improve System Efficiency 67
3.6 Common Variable Speed Drives (VSD) Used with Motors 72
3.7 Key Takeaways ... 90

Chapter • Four

Pump and System Interaction, 93

4.1 Basic System Characteristics .. 93
4.2 Piping System .. 97
4.3 The Pump Curve ... 99
4.4 System Operating Points for Single Pump 104
4.5 Multiple Pumps ... 116
4.6 Complex Piping Systems .. 120
4.7 Key takeaways .. 124

Chapter • Five

Improving the Performance of Existing Pumping Systems, 125

5.1 What is an Energy Assessment? ... 125
5.2 Basic Framework for Conducting an Energy Assessment 126
5.3 Diagnostics and Data Collection ... 131
5.4 Using the Data to Identify Opportunities 144
5.5 Evaluating opportunities .. 155
5.6 Pumping Systems Control .. 157
5.7 Getting Started on Optimizing Your Pumping Systems to Gain Significant Benefits ... 164
5.8 Numerical Example of BEP Evaluation and System Modification Options ... 167
5.9 Key Takeaways ... 169

Chapter • Six

Building Better Pumping Systems: Optimizing New Designs, 171

6.1 Opportunities Available In New Systems 171
6.2 Pump Piping System Optimization ... 188
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>How Pumping Systems Change Over Time</td>
<td>191</td>
</tr>
<tr>
<td>6.4</td>
<td>The Value of Modeling and Optimizing New Designs</td>
<td>196</td>
</tr>
<tr>
<td>6.5</td>
<td>Pump Design Considerations in New Build Systems</td>
<td>199</td>
</tr>
<tr>
<td>6.6</td>
<td>Design for the Future</td>
<td>211</td>
</tr>
<tr>
<td>6.7</td>
<td>Control Strategy Optimization—System Start-Up from Optimization</td>
<td>216</td>
</tr>
<tr>
<td>6.8</td>
<td>Key Takeaways</td>
<td>220</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>7.2</td>
<td>Elements of LCC (Reference 2)</td>
<td>224</td>
</tr>
<tr>
<td>7.3</td>
<td>Analyze Life Cycle Cost Before Making a Decision</td>
<td>233</td>
</tr>
<tr>
<td>7.4</td>
<td>Key Takeaways</td>
<td>236</td>
</tr>
<tr>
<td>8.1</td>
<td>Summary—Pump System Optimization</td>
<td>237</td>
</tr>
<tr>
<td>8.2</td>
<td>Summary—Pumps and Drivers</td>
<td>237</td>
</tr>
<tr>
<td>8.3</td>
<td>Summary—Pump System</td>
<td>238</td>
</tr>
<tr>
<td>8.4</td>
<td>Summary—The Business Case</td>
<td>239</td>
</tr>
</tbody>
</table>

Appendix A

Glossary, Symbols, and Acronyms, 241

Appendix B

References, 265

Appendix C

Pump System Optimization Case Studies, 267
Appendix D
Shaft Sealing, 301

Appendix E
Tool Matrix, 323

Appendix F
Evaluating Alternative Pumping Systems using Weighted Average Criteria, 335

Appendix G
Investment Justification and Decision-Making, 339

Appendix H
Case Study/Image Credits, 347

Appendix I
Index, 349