Table of Contents

Foreword ... xiii
Acknowledgements .. xiv
About the Hydraulic Institute xvi
About Pump Systems Matter xvii

Chapter • One

Introduction, 1

1.1 Objective .. 1
1.2 General Power Industry Update 1

Chapter • Two

Today’s Power Industry, 3

2.1 Process Improvements and Considerations 5

Chapter • Three

Power Plant Configurations and Considerations, 7

3.1 Steam Electric Power Plants 8
3.2 Power Plant Pumps ... 13
 3.2.1 Boiler Feed Pumps ... 13
 3.2.2 Boiler Feed Booster Pumps 21
 3.2.3 Condensate Pumps ... 21
 3.2.4 Condenser Circulating Water Pumps 22
 3.2.5 Boiler Circulating Pumps 24
 3.2.6 Heater Drain Pumps 26

Chapter • Four

Overview of Combined-cycle Plants, 27

4.1 Introduction .. 27
 4.1.1 The Importance of Uptime, Reliability, and Availability . 27
4.2 Description ... 28
4.3 Operation ... 30
 4.3.1 Plant Design and Operation 31
Chapter • Five

Typical 400-MW, Combined-cycle Plant, 35

5.1 Process .. 35
 5.1.1 Overview – Services 35
 5.1.2 Fluids Handled 35
 5.1.3 Pump Types Used 36
 5.1.4 Special Features, Characteristics, and Considerations 36

5.2 Machinery/Pumps 36

Chapter • Six

Specific Processes and Pump Selection, 43

6.1 Main Service Pumps 43
 6.1.1 Boiler Feed System 43
 6.1.2 Boiler Feed Booster Pumps 52
 6.1.3 Boiler Circulating Pumps 53
 6.1.4 Boiler Fill (or Jockey) Pumps 54
 6.1.5 Condensate System 55
 6.1.6 Heater Drain Pumps 56
 6.1.7 Circulating Water Pumps 59
 6.1.8 Commissioning 73

6.2 Auxiliary Service Pumps 75
 6.2.1 Screen Wash Pumps 75
 6.2.2 Auxiliary Cooling Water Pumps 77
 6.2.3 Fogger (Wet Compression) Pumps 79
 6.2.4 Oily Water Pumps 80
 6.2.5 Sump Pumps 81
 6.2.6 Chemical Metering Pumps 82
 6.2.7 Makeup Water Pumps 84

Chapter • Seven

Summary, 87

7.1 Status .. 87
7.2 Capacity and Demand 87
7.3 Infrastructure ... 88
7.4 The Way Forward 88
Appendix A
Pumps for Condensing Combined-cycle Power Plants, 91

Appendix B
Materials of Construction for Main Service Pumps, 109

B.1 Boiler Feed System. .. 111
B.1.1 Boiler Feed Pumps ... 111
B.1.2 Boiler Feed Booster Pumps and Boiler Circulating Water Pumps ... 114
B.1.3 Boiler Fill Pumps .. 114
B.2 Condensate System and Heater Drain Pumps 115
B.3 Circulating Water Pumps ... 115

Appendix C
Coupling Selections, 119

Appendix D
Seals and Packing Recommendations, 125

D.1 Seals ... 126
D.1.1 Chart Legend for Seal Recommendation Sheet 126
D.1.2 Seal Chamber Pressure ... 132
D.1.3 Energy Efficiency and Life Cycle Costs 132
D.2 Packing .. 133

Appendix E
Lubrication Systems, 141

E.1 Filtration .. 142
E.2 Cooling .. 142
E.3 Lube Oil Tank Heating .. 143
E.4 Instrumentation ... 143
E.5 Operation .. 143
Appendix F
Image Credits, 149

Appendix G
Bibliography, 151

Appendix H
Combined-cycle Power Terms and Definitions, 155

Appendix I
Index, 169

List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Diagram of a simple steam power cycle with a condensing turbine</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram of a typical pulverized coal condensing steam power plant</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram of a closed feedwater cycle</td>
<td>14</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagram of an open feedwater cycle with one deaerator and three closed heaters</td>
<td>15</td>
</tr>
<tr>
<td>3.5</td>
<td>Multistage ring-section pump (BB4)</td>
<td>16</td>
</tr>
<tr>
<td>3.6</td>
<td>Impeller</td>
<td>16</td>
</tr>
<tr>
<td>3.7</td>
<td>Axially split casing pump (BB3)</td>
<td>18</td>
</tr>
<tr>
<td>3.8</td>
<td>Radially split casing pump (BB5)</td>
<td>19</td>
</tr>
<tr>
<td>3.9</td>
<td>Radially split casing pump (BB2)</td>
<td>20</td>
</tr>
<tr>
<td>3.10</td>
<td>Vertical multistage can pump (VS6)</td>
<td>23</td>
</tr>
<tr>
<td>3.11</td>
<td>Overhung impeller pump (OH2)</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Combined-cycle power plant, one-on-one</td>
<td>32</td>
</tr>
<tr>
<td>5.1</td>
<td>Combined-cycle power plant, two-on-one, 400 MW</td>
<td>38</td>
</tr>
<tr>
<td>6.1</td>
<td>Three-dimensional view of multistage ring-section pump (BB4)</td>
<td>47</td>
</tr>
<tr>
<td>6.2</td>
<td>Hydraulic axial thrust</td>
<td>49</td>
</tr>
<tr>
<td>6.3</td>
<td>Compensation of axial thrust by balance disk</td>
<td>49</td>
</tr>
<tr>
<td>6.4</td>
<td>Compensation of axial thrust by balance disk or stepped balance drum together with thrust bearing</td>
<td>50</td>
</tr>
<tr>
<td>6.5</td>
<td>Compensation of axial thrust by balance drum and axial thrust bearing</td>
<td>50</td>
</tr>
</tbody>
</table>
Table of Contents

6.6 Opposed impeller design ... 51
6.7 API Plan 13 installed in a VS6-style pump - with shutdown seal flush system .. 57
6.8 API Plan 13/62 installed in a VS6-style pump 58
6.9 Circulating water flow diagram 60
6.10 Typical circulating water pump designs illustrating wet pit and dry pit designs .. 62
6.11 Pump assembly (left), removable inner element (middle), pump casing (right) ... 65
6.12 Maximum operating speeds for single suction pumps (metric units) with \(S = 165 \) .. 70
6.13 Maximum operating speeds for single suction pumps (US customary units) with \(N_{ss} = 8500 \) 71
6.14 Power plant screen wash/circulating water intake configuration 76
6.15 Closed-loop cooling water pump flow diagram 78
6.16 Chemical metering pump ... 83

A.1 Overhung flexibly coupled horizontal foot mounted - single stage - ASME B73.1 (OH1) ... 92
A.2 Overhung flexibly coupled horizontal centerline mounted - single stage - API-610 (OH2) ... 93
A.3 Overhung flexibly coupled vertical end suction (OH3A) 94
A.4 Overhung close coupled vertical end suction (OH5A) 95
A.5 Between bearings axially split - single stage (BB1) 96
A.6 Between bearings radially split - single stage (BB2) 97
A.7 Between bearings multistage axially split (BB3) 98
A.8 Between bearings multistage radially split single casing (BB4) 99
A.9 Between bearings multistage radially split double casing with opposed impeller, volute (BB5) 100
A.10 Between bearings multistage radially split double casing with stacked in-line diffuser construction (BB5) 101
A.11 Vertical, single or multistage, short setting, open line shaft (VS1) .. 102
A.12 Vertical, single or multistage, mixed flow, short setting, open line shaft (VS1) .. 103
A.13 Vertically suspended single casing separate discharge (sump) line shaft (VS4) .. 104
Table of Contents

A.14 Vertically suspended single casing separate discharge (sump) cantilever (VS5) 105
A.15 Vertically suspended double casing diffuser (VS6) 106
A.16 Vertically suspended double casing volute (VS7) 107
D.1 Injection arrangement .. 135
D.2 Lantern ring injection arrangement 135
D.3 Product-lubricated arrangement 136
D.4 Bull ring arrangement .. 136
E.1 Main feed pump lube oil system 146

List of Tables

5.1 Main service pump selection 37
5.2 Auxiliary service pump selection 40
5.3 Main service pumps - special considerations 41
5.4 Auxiliary service pumps - special considerations 41
B.1 Materials of construction for main service pump 110
B.2 Materials for type BB3 - material class C-6 materials: chrome case, chrome impeller, chrome fitted 112
B.3 Materials for type BB4 - material class C-6 materials: chrome case, chrome impeller, chrome fitted 112
B.4 Materials for type BB5 - volute style - material class S-6 (BFW-Mod) materials: carbon-steel barrel, covers, chrome inner case, impellers, and wear parts 113
B.5 Materials for type BB5 - diffuser style - material class C-6 (modified) materials: chrome barrel, covers, diffusers, impellers, and wear parts 113
B.6 Materials for type BB2 - material class C-6 materials: chrome case, chrome impeller, chrome fitted 114
B.7 Condensate system and heater drain pump materials for type VS6 - material class S-1, S-5, and S-6 materials: carbon-steel barrel .. 115
B.8 Circulating water system materials for type VS1 - material class I-1, S-1, S-3, and D-1 materials 116
B.9 Vertical wet pit pumps: material selection for brackish water and seawater service 117
C.1 Coupling family suitability per application 120
C.2 Types of couplings .. 123
Table of Contents

D.1 Seal recommendations for combined-cycle power plants – main service pumps ... 128
D.2 Seal recommendations for combined-cycle power plants – auxiliary pumps .. 130
D.3 Packing recommendations for combined-cycle plants .. 134
D.4 Packing recommendations for combined-cycle plants - alternate to mechanical seals 138
E.1 Lubrication system - typical features and options .. 144