Table of Contents

Foreword ... xv
Acknowledgements .. xvii
About the Hydraulic Institute and Pump Systems Matter xxi
Europump ... xxi
Executive Summary ... xxiii
What is Life Cycle Cost? ... xxiv
Getting Started .. xxv
Introduction .. xxvii

Chapter One

Life Cycle Cost, 1

1.1 General .. 1
1.2 Elements of Life Cycle Costs 3
 1.2.1 Initial Cost (C_{ic}) ... 3
 1.2.2 Installation and Commissioning (Start-up) Cost (C_{in}) ... 4
 1.2.3 Energy Cost (C_{e}) .. 5
 1.2.4 Operating Cost (C_{o}) 6
 1.2.5 Maintenance and Repair Cost (C_{m}) 6
 1.2.6 Downtime and Loss of Production Cost (C_{s}) 8
 1.2.7 Environmental Cost, Including Disposal of Parts and
 Contamination from Pumped Liquid (C_{env}) 8
 1.2.8 Decommissioning and Disposal Cost, Including
 Restoration of the Local Environment (C_{d}) 9
1.3 Calculating Life Cycle Costs 9
 1.3.1 General ... 9
 1.3.2 Calculating Present Value (PV) 11
 1.3.3 Calculation Chart Using the Simplified Method 13
 1.3.4 Example Using the Manual Calculation Chart 13
1.4 Financial Decision Methods - Payback and Internal Rate
 of Return .. 17
 1.4.1 Simple Payback ... 17
 1.4.2 Discounted Payback .. 17
 1.4.3 Internal Rate of Return 19
Chapter • Two
Pumping System Design, 22

2.1 General .. 22
2.2 System Design 22
2.2.1 Pipe Size 22
2.2.2 Pump and System Curves 23
2.3 Output Control 25
2.4 Pump Type Selection 25
2.4.1 Pump Types 25
2.4.2 Ways to Reduce LCC When Selecting Pumps . 34
2.5 Selecting a Driver 39
2.5.1 Background 39
2.5.2 Types of Electric Motors 42
2.5.3 Efficiency and Energy Costs 44
2.5.4 Variable Frequency Drives 45
2.5.5 Additional Driver and Variable Speed Drive Information . 46
2.6 Auxiliary Services 46
2.6.1 Cooling Services 47
2.6.2 Heating ... 48
2.6.3 Seal Flush Systems 48
2.6.4 Seal Quench Systems 49
2.6.5 Barrier Fluid Systems 49
2.6.6 Lubrication Systems for Sleeve Bearings . 49
2.7 Power Transmission 49
2.7.1 Summary of Power Transmission Characteristics . 49
2.8 System Effectiveness in Design and Output Control:
 A New Concept 50
 2.8.1 Process Requirements 50
 2.8.2 Specific Energy 54
 2.8.3 Summary 60
2.9 Monitoring and Sustaining the System 61
 2.9.1 Maintaining Pump Efficiency 61
 2.9.2 Organizing Maintenance and Monitoring . 67

Chapter • Three
Methods for Analyzing Existing Pumping Systems, 70

3.1 Introduction 70
3.2 Improving the System 70
3.3 System Components 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Pump</td>
<td>71</td>
</tr>
<tr>
<td>3.3.2 Control or Throttle Valves</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3 Components</td>
<td>72</td>
</tr>
<tr>
<td>3.4 System Loads</td>
<td>73</td>
</tr>
<tr>
<td>3.5 Determining the Rates of Flow</td>
<td>73</td>
</tr>
<tr>
<td>3.6 Example of Minimizing Losses by Balancing a Branched System</td>
<td>74</td>
</tr>
<tr>
<td>3.6.1 Balancing the System</td>
<td>74</td>
</tr>
<tr>
<td>3.6.2 Changing the Pump</td>
<td>76</td>
</tr>
<tr>
<td>3.7 Examples for Achieving Energy Savings in Existing Systems</td>
<td>78</td>
</tr>
<tr>
<td>3.7.1 Example 1: Waste Collection System With Oversized Pumps</td>
<td>78</td>
</tr>
<tr>
<td>3.7.2 Example 2: System With a Problem Control Valve</td>
<td>82</td>
</tr>
<tr>
<td>Chapter Four</td>
<td></td>
</tr>
<tr>
<td>Examples of LCC Analysis, 86</td>
<td></td>
</tr>
<tr>
<td>4.1 Waste Collection System Example</td>
<td>86</td>
</tr>
<tr>
<td>4.1.1 Conclusion</td>
<td>87</td>
</tr>
<tr>
<td>4.2 Problem Control Valve Example</td>
<td>89</td>
</tr>
<tr>
<td>4.2.1 Conclusion</td>
<td>90</td>
</tr>
<tr>
<td>Chapter Five</td>
<td></td>
</tr>
<tr>
<td>Effective Procurement Using LCC, 94</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>5.2 Enquiry Documentation</td>
<td>94</td>
</tr>
<tr>
<td>5.3 Life Cycle Cost (LCC)</td>
<td>95</td>
</tr>
<tr>
<td>5.4 Work Methodology</td>
<td>95</td>
</tr>
<tr>
<td>5.5 Contract Boundaries</td>
<td>96</td>
</tr>
<tr>
<td>5.6 Evaluating Tenders</td>
<td>96</td>
</tr>
<tr>
<td>5.7 Inspection - Performance Bonus or Penalty</td>
<td>96</td>
</tr>
<tr>
<td>5.8 Example</td>
<td>96</td>
</tr>
<tr>
<td>Chapter Six</td>
<td></td>
</tr>
<tr>
<td>Recommendations for Designing and Procuring Pumping Systems, 98</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Seven</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>References</td>
<td>102</td>
</tr>
</tbody>
</table>

Chapter • Eight

Glossary of Terms and Symbols, 105

Appendix A

System Curves, 107

A.1 System Curves .. 107
 A.1.1 Operating Duty Point 107
 A.1.2 Characteristic Curves 109
 A.1.3 Branched Piping Systems 120
 A.1.4 Duty Modifications 124
 A.1.5 Viscous and Non-Newtonian Liquids 127
A.2 Computer Software 128

Appendix B

Pumping Output and System Control, 129

B.1 Output Control .. 129
 B.1.1 General ... 129
 B.1.2 Determining Flow Requirements 130
B.2 System Control ... 133
 B.2.1 Control Parameters 134
 B.2.2 Start–Stop Control 136
 B.2.3 Throttling Control 139
 B.2.4 Variable Speed Regulation 140
 B.2.5 Eccentric Radius Adjustment in Vane Cell Pumps ... 143
 B.2.6 Stroke and Speed Regulation of Reciprocating Positive Displacement Pumps 143
B.3 Summary ... 144

Appendix C

Pump Efficiencies, 146

C.1 Pump Efficiencies 146
 C.1.1 General .. 146
 C.1.2 Nomenclature ... 149
C.2 Regulation of the European Commission (EU) No 547/2012 for Water Pumps 150
Table of Contents

C.2.1 Overview .. 150
C.3 U.S. DOE Conservation Standard for Certain Clean Water Pumps .. 150
C.3.1 Overview .. 150

Appendix D

Case Histories—Cost Savings Examples, 152

D.1 Introduction .. 152
Case History 1: Building services 155
Case History 2: Pulp and paper manufacture 157
Case History 3: Chemical processing 159
Case History 4: Water supply .. 161
Case History 5: Waste water .. 163
Case History 6: Steel making .. 165
Case History 7: Petrochemical processing 167
Case History 8: Domestic electrical appliance 169
Case History 9: Mining .. 171
Case History 10: Power plant .. 173
Case History 11: Building services 175
Case History 12: Building services 176
Case History 13: Chemical industry 178
Case History 14: Food industry .. 180

Appendix E

Drivers, Transmissions, and Variable Speed Drives, 182

E.1 Induction Motors ... 182
E.1.1 Introduction .. 182
E.1.2 Definitions of Motor Efficiency 183
E.1.3 Minimum Efficiency .. 185
E.1.4 Selecting a Motor .. 191
E.2 Considerations for Electric Motors to Improve System Efficiency ... 192
E.3 Variable Frequency Drives (VFD) 196
E.3.1 Overview of VFDs .. 196
E.4 Power Transmission ... 206
E.4.1 Efficiency and Characteristics of Various Types of Transmissions 206
E.5 Key takeaways .. 212
List of Figures

Typical LCC for a medium-sized industrial pumping system xxvi
1.1 Manual calculation chart of LCC. .. 15
1.2 Example 4.1.b using the manual calculation chart 16
2.1 Key cost components for a pumping installation as related
to pipe size .. 23
2.2 Typical pump performance and system curves – rotodynamic
pumps ... 24
2.3 Typical pump performance and system curves – positive
displacement pumps .. 24
2.4 Pump selection diagram for rotodynamic pumps with
standard drivers handling clean liquids. 28
2.5 Average attainable industrial pump efficiency, η_{avg},
for rotodynamic volute pumps with closed impellers and for
clean cold water ... 29
2.6 Typical pump selection diagram for positive displacement
pumps (PD pumps) .. 30
2.7a Maximum attainable efficiencies for PD pumps with
fluids below 100 mPa s ... 31
2.7b Maximum attainable efficiencies for PD pumps with
fluids below 1000 mPa s .. 32
2.8 Indication of the influence of viscosity on the efficiency
for different types of PD pumps 33
2.9 Example of a performance curve for a rotodynamic centrifugal (radial
flow) pump showing the preferred operating region 35
2.10 Variations in efficiency for a 30-kW 4-pole motor 44
2.11 Efficiency curve of a typical variable frequency drive 46
2.12 Duration diagrams for two different pumping systems 51
2.13 System curve .. 52
2.14 Lines of constant efficiency (broken) superimposed
over speed-regulated pump curves (solid) 53
2.15 The operating point on the reduced speed curve moves
relatively higher on the pump curve as the speed is reduced. ... 53
2.16 Example of specific energy as a function of static head
and overall efficiency ... 56
2.17 Three different system curves A, B and C, all passing through the same duty point at full speed and the associated curves for specific energy 58
2.18 Throttling a valve changes the rate of flow by adding pressure drop in the valve, thus moving the duty point along the pump curve .. 59
2.19 Compared with regulation by throttling, variable speed drives always save on energy .. 59
2.20 Parallel pump operation ... 60
2.21 Reduced efficiency and head caused by leakage losses 61
2.22 Clearances* from left to right: semi-open impeller clearance; closed impeller radial clearance ... 62
2.23 Examples of clearances (s) in rotating positive displacement pumps: a) screw pump; b) gear pump 65
2.24 Pressure signals of a hydraulically acting diaphragm pump: a) healthy pressure signal; b) leakage in the hydraulic chamber (replenishing window [RW]) 66
2.25 Structure-borne noise signal and pressure signal of a reciprocating PD pump: a) healthy pump; b) leaking suction valve .. 67
2.26 Preventive maintenance in terms of total maintenance costs 68
3.1 Branched piping system showing the rate of flow in the various paths ... 74
3.2 Branched system showing the differential pressure in bar across the throttle valves needed to throttle the rate of flow to the set value .. 75
3.3 The branched piping system with flows balanced and pump impeller trimmed to eliminate excessive differential pressure across the control valves 76
3.4 The pump curve for the larger and smaller impeller trim; rate of flow for unbalanced flow is 166 m³/h (720 USgpm), balanced rate of flow 120 m³/h (520 USgpm) 77
3.5 Pressurized forced main system pumping down the sump using on/off control; evaluating changing pumping rate for lower operating costs ... 78
3.6 Total head as a function of rate of flow for the sump pump system ... 80
3.7 Pump curve for the pump selected for 30 m³/h 81
3.8 Sketch of pumping system in which the control valve fails 83
Table of Contents

3.9 System resistance curve and pump curve showing the operation of the system ... 84

3.10 Pump curves and system curves showing the operation of the original system and the modified pump impeller. 84

4.1 LCC comparison for the waste collection system 88

4.2 LCC comparison for the problem control valve system 91

4.3 LCC comparison for the problem control valve system 93

6.1 New pumping system .. 99

6.2 Existing pump systems .. 100

A.1a Operating duty point at $H_{\text{pump}} = H_{\text{syst}}$ for a rotodynamic pump ... 108

A.1b Operating duty point at $H_{\text{pump}} = H_{\text{syst}}$ for a positive displacement pump ... 108

A.2 Example of simple piping system 109

A.3 System curve .. 111

A.4 Piping systems with the same static head 111

A.5 Piping system with $H_{\text{stat}} \approx 0; H_{\text{syst}} = H_{j}$ 112

A.6 System with $H_{j} \approx 0$... 112

A.7 Resultant pump curve for series operation 113

A.8 Parallel pump operation .. 113

A.9 Parallel operation of two similar pumps with different system curves ... 114

A.10 Pumping systems with different static heads 115

A.11 System curve with varying static head 116

A.12 Consequences of incorrectly calculated pipe losses 117

A.13 The effect of deposits (scale, rust, etc.) on pipelines 118

A.14 The effect of varying levels 119

A.15 The effect of adding margins to calculated system curve 119

A.16 Branched circulation system 121

A.17 Branched piping system, $H_{\text{stat}} = 0$ 121

A.18 Branched pipe system with different static head 122

A.19 Branched piping system with positive suction static head 123

A.20 Pump performance by reduced impeller diameter 124

A.21 Pump performance by variable speed 125

A.22 Variable pitch propeller pumps 126
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.23</td>
<td>Mixed-flow pumps with adjustable inlet guide vanes</td>
<td>126</td>
</tr>
<tr>
<td>A.24</td>
<td>Pump and system curves for more viscous liquids as compared with water</td>
<td>127</td>
</tr>
<tr>
<td>A.25</td>
<td>Pump and system curves for water and pulp suspension</td>
<td>128</td>
</tr>
<tr>
<td>B.1</td>
<td>The duty point is the intersection between the pump and system curves: rotodynamic pump (RD); positive displacement pump (PD)</td>
<td>130</td>
</tr>
<tr>
<td>B.2</td>
<td>Flow as a function of time – operating curve</td>
<td>131</td>
</tr>
<tr>
<td>B.3</td>
<td>Duration curve of the flow</td>
<td>131</td>
</tr>
<tr>
<td>B.4</td>
<td>Graphical integration method to determine mean rates of flow</td>
<td>132</td>
</tr>
<tr>
<td>B.5</td>
<td>Illustration of Equations B-1 and B-2</td>
<td>133</td>
</tr>
<tr>
<td>B.6</td>
<td>Control at (a) constant pressure, (b) constant flow, and (c) proportional level control</td>
<td>137</td>
</tr>
<tr>
<td>B.7</td>
<td>Pump and drive system</td>
<td>140</td>
</tr>
<tr>
<td>B.8a</td>
<td>Examples of performance curves for a speed regulated rotodynamic pump</td>
<td>142</td>
</tr>
<tr>
<td>B.8b</td>
<td>Performance curves for PD-pumps with speed regulation</td>
<td>142</td>
</tr>
<tr>
<td>B.9</td>
<td>Pump power requirement for speed-regulated rotodynamic pump with hydraulic coupling transmission</td>
<td>143</td>
</tr>
<tr>
<td>B.10</td>
<td>Typical stroke adjustable drive element of a reciprocating positive displacement pump</td>
<td>144</td>
</tr>
<tr>
<td>B.11</td>
<td>Power requirement for single stage rotodynamic pumps with flow control using various methods, in a system with a low ratio: H_{stat}/H_0</td>
<td>145</td>
</tr>
<tr>
<td>C.1</td>
<td>Typical single-stage, single-suction volute casing pump</td>
<td>147</td>
</tr>
<tr>
<td>C.2</td>
<td>Maximum attainable efficiencies, η_{max}, of single-stage, single-suction volute casing pumps dependent on specific speeds and rates of flow</td>
<td>148</td>
</tr>
<tr>
<td>C.3</td>
<td>Average attainable industrial pump efficiencies, η_{avg}, of single-stage, single-suction volute casing pumps dependent on specific speeds and rates of flow</td>
<td>149</td>
</tr>
<tr>
<td>E.1</td>
<td>Major features of an electric motor that affects efficiency</td>
<td>184</td>
</tr>
<tr>
<td>E.2</td>
<td>Motor efficiency versus load EPAct and NEMA premium comparison</td>
<td>191</td>
</tr>
<tr>
<td>E.3</td>
<td>Life cycle cost of an industrial AC induction motor</td>
<td>193</td>
</tr>
<tr>
<td>E.4</td>
<td>75 kW (100 hp) motor efficiency and power factor as a function of load</td>
<td>195</td>
</tr>
</tbody>
</table>
Table of Contents

E.5 VFD block diagram ... 197
E.6 VFD operator interface (OI)/user interface (UI) 197
E.7 VFD with optional bypass 199
E.8 Pump system components 200
E.9 Constant torque and variable torque pump load
 as a function of frequency or speed 201
E.10 A constant torque V/Hz ratio supplied to the motor 202
E.11 A variable torque V/Hz ratio supplied to the motor 202

List of Tables

1.1 Factor Cp/Cn for a single cost element after n years 12
1.2 Discount factor (df) for constant yearly expenditures 14
1.3 Simple Payback ... 17
1.4 Discounted payback (Net Present Value) 18
1.5 Internal Rate of Return by trial and error 20
1.6 Internal Rate of Return by Excel Function 20
2.1 Control methods – applications and limitations 26
2.2 Application ranges of positive displacement pumps 38
2.3 Properties of commercially available PD pumps;
 PH/PS = hydraulic power /shaft power 40
2.4 Positive and negative aspects of specific transmissions 50
3.1 Operation and annual operating cost of the three-branched
 piping system in the various operating modes 77
3.2 Work sheets (a) and (b) showing how the rate of flow
 is calculated by pumping down and filling a sump 79
3.3 Cost comparison for energy cost for the 60 m³/h (260 USgpm)
 and 30 m³/h (130 USgpm) pumps 82
3.4 Cost comparison for Options A through D in the system
 with a failing control valve 85
B.1 Control methods – applications and limitations 134
B.2 Some control parameters used for pumps 136
D.1 Summary of Case Histories 153
E.1 IEC 60034-30 compared to NEMA MG-1 191
E.2 Motor energy cost comparison 193