

Appendix B

Pump System Certified – Level 2 Body of Knowledge

This Appendix provides the additional body of knowledge topics upon which the Pump System Certified – Level 2 examination for certification is based. The examination will include topics covered in Mandatory Appendix A as well as the following additional knowledge topics:

B-1 Introduction to Pumps (2%)

No additional topics covered in PSC Level 2. Refer to Mandatory Appendix A for body of knowledge topics.

B-2 Pump Performance Curves and Power Consumption (4%)

- a) Compare and contrast fixed speed and variable speed pump curves.
- b) Identify parallel and series pump curves

B-3 Pump Systems (9%)

- a) Describe considerations in determining Net Positive Suction Head (NPSH) margin
- b) Explain how flow requirements are determined for simple and complex application examples
- c) Calculate NPSHA and NPIPA based on site conditions and liquid properties
- d) Describe the nature of Newtonian and non-Newtonian liquids
- e) Calculate complex friction loss through pipes, valves, fittings by gathering information, variable data and for multiple fittings/pipe
- f) Understand the use of the Darcy Weisbach Equation and the Hazen Williams Equation
- g) Apply Bernoulli's Equation relative to flow through pipes, nozzles, etc.
- h) Describe system transients during pump start-up and shut-down
- i) Calculate a system curve for simple systems
- j) Describe tools used to calculate system curves for complex or variable systems

B-4 Rotodynamic Pump Designs and Types (14%)

- a) Explain impeller trimming methods
- b) Describe balance methods, grades, and applicability for different impeller and pump designs
- c) Describe types of pump casings and discharge collectors and their applicability to application requirements
- d) Identify and describe the characteristics of regenerative turbine, self-priming, sealless pumps, multi-stage, slurry, and special effect pumps
- e) Identify design considerations of each RD pump type
- f) Describe and explain the configurations and purposes of double casing pumps (barrel/can pumps)
- g) Describe shaft and column stretch and why it is important to consider
- h) Compare and contrast specific speed and suction specific speed
- i) Describe factors that will affect pump attainable efficiency
- j) Calculate suction specific speed
- k) Discuss design considerations when there is potential for reverse flow through the pump
- l) Identify and explain location and role of the cutwater area of volute
- m) Describe radial thrust, the causes, and mitigation strategies
- n) Describe axial thrust, the causes, and mitigation strategies, including momentum change
- o) Describe shaft deflection and stress, the causes, and mitigation strategies
- p) Describe pump design factors that effect rolling element bearing life and what the L10 bearing life calculation represents
- q) Describe lateral and torsional critical speed

- r) Explain the use of suction inducers and their application considerations
- s) Calculate fluid temperature rise
- t) Describe the purpose of a self-priming pump

B-5 Positive Displacement Pump Designs and Types (7%)

- a) Explain factors that affect positive displacement pump efficiency
- b) Explain starting and low speed operation considerations of PD pumps being constant torque devices
- c) Describe self-priming characteristics of PD pumps
- d) Describe single acting, double acting, triplex, multiplex, etc.
- e) Describe the purpose of Air Operated Diaphragm (AOD) pump
- f) List various names for metering pumps
- g) List metering pump types (diaphragm, piston, plunger, solenoid operated etc.)
- h) Explain nature and purpose of turndown ratio of metering pumps
- i) Discuss design fit or running clearances between the pumping element
- j) Explain factors that affect pump slip
- k) Discuss unbalance forces and how they change with operating speed
- l) Compare and contrast design features of timed and untimed rotary pumps

B-6 Pump Components and Accessories (5%)

- a) Explain lubrication and cooling methods for packing
- b) Compare and contrast bearing lubrication methods, lubricants, and support systems
- c) Explain and describe the various types of pump bases
- d) Explain the purpose for external and internal coatings on pump components and/or pumping units
- e) Apply coupling selection and sizing methods
- f) Describe variable speed drive train devices
- g) Describe advanced mechanical seal types
- h) Describe thrust bearing location relative to the coupling
- i) Discuss and identify seal plans
- j) Describe the purpose of flywheels and their effect on the rotating element
- k) Discuss common system accessories used in reciprocating pumps
- l) Discuss gear sets and their use in pumping
- m) Discuss non-VFD variable speed drives

B-7 Drivers and Drives (5%)

- a) Explain impact of speed-torque curves on motor selection for RDs and PDs
- b) Explain locked rotor torque
- c) Explain service factor and how it is used
- d) Explain power factor
- e) Explain allowable starts per hour for across the line and reduced voltage starts
- f) Explain precautions for altitude considerations for drivers and drives
- g) Explain purpose of anti-reverse mechanisms
- h) Compare and contrast submersible and immersible motors
- i) Explain submersible motor cooling and how it is accomplished
- j) Explain lightning and surge protection for motors
- k) Explain precautions for Explosion Proof (EXP) designs and hazardous locations
- l) Describe features and characteristics of Variable Frequency Drives (VFDs)
- m) Explain VFD operating principles
- n) Describe VFD controls and applications
- o) Cite motor design considerations for use with VFDs (i.e., inverter duty motors)
- p) Explain VFD selection and configuration related to constant and variable torque loads
- q) Discuss cable length, shielding, grounding, and electromagnetic interference (EMI)
- r) Explain line harmonics and filters
- s) Discuss the typical uses of direct current (DC) motors with pumps

B-8 System Design Considerations (9%)

- a) Compare and contrast system design for fixed and variable operating conditions
- b) Explain how end-use equipment establishes flow demand(s)
- c) Identify typical codes and regulations that apply to pump systems
- d) Describe system plans and information required for pump specification
- e) Explain control methods and associated instrumentation
- f) Discuss application considerations for flooded suction and suction lift
- g) Describe importance of free surface intake and inlet piping design on pump performance and reliability
- h) Explain submergence and its effect on pump system design
- i) Explain role of outlet piping velocity in system design
- j) Describe system considerations that affect the applied pump nozzle loads
- k) Discuss when pressure pulsation control is needed and the devices that are used
- l) Discuss safety design considerations for the system to protect equipment, environment, and people
- m) Explain purposes of a Programmable Logic Controller (PLC) and a Human-Machine Interface (HMI)
- n) Identify and use system process flow, mechanical, electrical, instrumentation, isometric drawings, and associated symbols.
- o) Identify and define various communication protocols
- p) Describe purpose of seismic analysis
- q) Identify when water hammer (hydraulic transient) is more prone to occur and when mitigation should be considered

B-9 Varying the Pump Operating Point (5%)

- a) Describe advantages and disadvantages of various methods used to control and change the operating point
- b) Explain implications of various curve shapes, including curve with dip and curve with droop
- c) Explain application of control curves when using variable speed control
- d) Analyze various application scenarios to determine the most suitable control
- e) Discuss control strategies used to stage parallel pumps when using variable speed control
- f) Describe common applications for parallel and series pumping

B-10 Pump Selection and Specification (9%)

- a) Explain strategies for pump selection to meet various design conditions (i.e., minimum flow condition / maximum flow condition)
- b) Explain duration diagram (flow rate versus time)
- c) Explain how to establish flow/head requirements based on a duration diagram
- d) Select pump type and configuration
- e) Select types of drivers, couplings, bearings, mechanical seals or packing, baseplate, sensors and controls, communication protocols and devices, etc.
- f) Determine suitable testing requirements
- g) Perform interpretation of specifications, sizing and selection of the pump system components
- h) Describe different liquid characteristics and their effect on pump performance and selection. (e.g., specific gravity or density, viscosity, vapor pressure, solids, entrained gas, pH, etc.)
- i) Compare and contrast North American and ISO pump characteristics
- j) Discuss types of corrosion (general, pitting, crevice, galvanic, erosion)
- k) Explain real world pump operation uncertainty vs specified performance
- l) Discuss common materials of construction for wet end parts and the factors affecting their selection

B-11 Testing (7%)

- a) Calculate pump total head
- b) Explain associated measurement uncertainties
- c) Describe mechanical integrity test

- d) Describe vibration test
- e) Explain procedures, test arrangements and possible modifications required to complete the performance tests
- f) Describe equipment and methods used to determine the pump tested values per applicable standards
- g) Discuss procedures, and test arrangement to complete hydrostatic pressure testing
- h) Explain laboratory instrument calibration and frequency
- i) Select instrumentation to meet required measurement uncertainty
- j) Describe tests specific to slurry pumps
- k) Describe motor tests
- l) Describe sound testing methods
- m) Describe motor performance and integrity tests
- n) Describe string test (complete unit wire-to-water testing, including the pump, drive train, motor, and VFD as applicable)
- o) Explain model testing (of large pumps)
- p) Describe NPSH and NPIP tests
- q) Describe Maximum Allowable Working Pressure (MAWP) and its use in hydrostatic tests
- r) Explain how NPIPR is determined for positive displacement pumps

B-12 Pump Installation, Commissioning, and Startup (7%)

- a) Identify and discuss pipe and tube connection designs and sealing methods
- b) Explain and identify suitable pump foundation, grouting and anchoring as applicable for the installation
- c) Describe and evaluate elements of proper free surface intake and pump suction piping, and understand what problems can occur if not done properly
- d) Describe elements of proper pump discharge piping
- e) Define and explain importance of verifying that nozzle loads are within acceptable limits, considering thermal, mechanical, and pressure forces
- f) Describe process of aligning drivers and various pump configurations
- g) Describe limitations of instrumentation and test setup for field testing
- h) Explain priming methods

B-13 Maintenance (5%)

- a) Describe contents of installation operation and maintenance manual and pre-shutdown checklists including personnel, data collection, system settings, and planned sequence of actions
- b) Explain how to determine if a pump is operating according to its required flow rate and head or pressure
- c) Identify allowable limits for vibration, temperature, power, etc.
- d) Describe typical maintenance monitoring and adjustment if applicable for mechanical seals and packing
- e) Document dimensions of wear surfaces and check per Instruction and Operation Manual (IOM)
- f) Perform methods for alignment of driver and pump shaft
- g) Explain practices for short- and long-term storage of pumps
- h) Perform inspection steps during operation
- i) Explain condition monitoring
- j) Describe calibration of instruments
- k) Explain condition based maintenance
- l) Explain metrics used to describe the pump or a population of pumps reliability or availability (e.g., Mean Time Between Repair [MTBR])
- m) Describe the current state and uses of the Internet of Things (IoT) and Industrial Internet of Things (IIoT) for machinery monitoring and maintenance

B-14 Troubleshooting (6%)

- a) List causes of abnormal noise
- b) List causes of high seal temperature and failures
- c) List cause of high bearing temperature and failures
- d) List cause of lube oil leakage
- e) List causes of pump overheating or seizure
- f) Describe potential causes of water hammer.
- g) Discuss failure modes of valves, drives, drivers, and other system components
- h) Identify and provide solutions to insufficient pressure
- i) Describe elements and process of root cause failure analysis

B-15 Pump System Optimization and Analysis (2%)

No additional topics covered in PSC Level 2. Refer to Mandatory Appendix A for body of knowledge topics.

B-16 Markets and Applications (4%)

- a) Discuss market influences and trends / considerations