Appendix A

Pump System Certified – Level 1 Body of Knowledge

This Appendix provides the body of knowledge upon which the Pump System Certified – Level 1 examination for certification is based. The examination will cover the following knowledge areas:

A-1 Introduction to Pumps (10%)

- a) Summarize basic pump function and purpose of major pump components
- b) Identify pump terminology, descriptions, and acronyms
- c) Identify a bare pump along with the basic components of a pump with driver and an extended pump product
- d) Identify common pump types including overhung impeller (OH), between bearing (BB), vertically suspended (VS), rotary and reciprocating pump types
- e) Explain the basic operating theory of a RD pump
- f) Explain the basic operating theory of a PD pump
- g) List general application considerations for RD pumps
- h) List general application considerations for PD pumps
- i) Compare and contrast the general shape and general characteristics of RD and PD performance curves
- j) Compare the different natures of flow generated by rotary and reciprocating pumps

A-2 Pump Performance Curves and Power Consumption (15%)

- a) Identify and describe types of performance curves that may appear on a pump performance graph
- b) Identify and explain basis of and information plotted or indicated on the pump curve
- c) Define and calculate pump output power, pump input power, and electrical input power (the latter both with and without a Variable Speed Drive [VSD])
- d) Convert between horsepower (hp) to kilowatts (kW)
- e) Calculate flow, head, and power changes per the affinity rules

A-3 Pump Systems (15%)

- a) Explain the purpose and function of pumps and pump systems
- b) Define the terms fluid and liquid
- c) Describe fluid properties that affect pump and system performance
- d) Identify types of horizontal and vertical pump systems
- e) Identify boundaries for determining the system curve
- f) Explain purposes of system types
- g) Define pressure and head and their relationship
- h) Cite and define all types of pressure
- i) Identify the component parts of pump total head
- j) Use charts to determine friction loss through pipes, valves, and fittings
- k) Define the system curve
- I) Understand why the system curve determines the operating head and flow rate
- m) Explain characteristics of flat and steep system curves
- n) Explain cavitation and how it affects a pump system
- o) Calculate friction loss through pipes, valves, fittings via simple calculations for pipe or fittings given variables
- p) Define Net Positive Suction Head Required (NPSHR), Net Positive Suction Head 3 (NPSH3), Net Positive Suction Head Available (NPSHA), Net Positive Inlet Pressure Required (NPIPR), Net Positive Inlet Pressure Available (NPIPA), and Net Positive Suction Head (NPSH) margin
- q) Describe system factors that affect the pump allowable operating region (AOR)

A-4 Rotodynamic Pump Designs and Types (10%)

- a) Identify the three major categories of rotodynamic pumps (radial flow, mixed flow, and axial flow)
- b) Calculate specific speed
- c) Identify common components in the construction of rotodynamic pumps
- d) Compare and contrast characteristics of the performance curves based on specific speed
- e) Identify the shapes of the four major types of impellers (open, semi-open, enclosed, and double inlet)
- f) Describe and explain the purpose of impeller balancing
- g) Identify the various types of pump casings and discharge collectors
- h) Identify and describe the characteristics of overhung (OH), between bearing (BB), vertically suspended (VS) pumps
- i) Compare and contrast pumps that are flexibly coupled, close coupled and rigidly coupled
- j) Identify deep set and short set vertical turbine pumps
- k) Identify open lineshaft pumps and enclosed lineshaft pumps
- I) Relate categories of RD pumps and their associated specific speeds
- m) Identify sealless pumps (canned motor pump and magnetic drive pump)
- n) Describe methods to control leakage across the impeller from high pressure to low pressure within the pump and effects on pump performance
- o) Identify the pump preferred operating region (POR)
- p) Describe pump design considerations that affect the allowable operating region (AOR)

A-5 Positive Displacement Pump Designs and Types (5%)

- a) Explain how positive displacement pumps generate flow
- b) Identify and describe the two positive displacement types rotary and reciprocating
- c) Describe the component construction and performance characteristics of rotary pumps
- d) Describe the component construction and performance characteristics of reciprocating pumps
- e) List types of rotary and reciprocating pumps
- f) Cite application considerations supporting use of positive displacement pumps
- g) Identify common components in the construction of positive displacement pumps
- h) Explain relationship of flow rate to positive displacement pump speed
- Explain why positive displacement total differential pressure is not related to speed and what dictates the maximum total differential pressure
- j) Explain the importance of pressure relief valves for use with PDs
- k) Calculate output power and input power by a positive displacement pump

A-6 Pump Components and Accessories (5%)

- a) Compare and contrast basic mechanical seals and packing types
- b) Explain the purposes of packing and seal glands
- c) Identify lubrication and cooling methods for packing
- d) Identify and describe mechanical seal plans and support systems when applicable
- e) Describe bearings and bushings used in pumps
- f) Explain why bearing seals are used
- g) List bearing lubrication methods and lubricants
- h) Describe the types of static sealing
- i) Explain the purpose of couplings, drive shafts, and gears between the driver and the pump
- j) Explain data on a typical nameplate for the pump

A-7 Drivers and Drives (5%)

- a) Compare and contrast pump drivers, including electric and non-electric types.
- b) Describe construction and features for electric motor types
- c) Describe motor frame sizes and standard dimensions
- d) Explain relevant driver standards
- e) List motor electrical parameters (poles, frequency, phase, voltage, etc.)
- f) List types of data found on technical data sheet, characteristic curve, and nameplate
- g) List motor enclosures and their suitable uses
- h) List driver starting methods
- i) Describe features and characteristics of Variable Frequency Drives (VFDs)
- i) Describe VFD installation and environment considerations including temperature and altitude

A-8 System Design Considerations (5%)

- a) Identify and explain purpose of major pump system components
- b) Describe examples of end use equipment
- c) Identify purpose of applicable standards
- d) Identify common pump industry symbols, icons, subscripts, and abbreviations

A-9 Varying the Pump Operating Point (6%)

- a) Explain design point on a pump curve, and why alternate operating points may be required
- b) Apply affinity rules based on impeller diameter and speed changes
- c) Cite methods to modify pump performance or control the flow or pressure: On/Off, throttling, bypass, variable speed, and impeller trim
- d) Explain implications of various curve shapes, including flat and steep
- e) Explain parallel pumping and how it impacts flow and head
- f) Explain series pumping and how it impacts flow and head

A-10 Pump Selection and Specification (5%)

- a) Determine most applicable pump types for common applications
- b) List sizing/selection application data requirements
- c) Describe liquid characteristics and the effect on pump selection
- d) Select appropriate pump based on hydraulic selection criteria provided (i.e. flow, head, and NPSHA)
- e) Discuss common materials of construction for wet end parts and the factors affecting their selection

A-11 Testing (5%)

- a) Describe performance test flow, head, power
- b) Describe pump efficiency, bowl efficiency, and overall efficiency
- c) Explain what differentiates a certified curve from other performance curves
- d) Compare and contrast non-witnessed and witnessed tests
- e) Understand hydraulic test acceptance grades variances
- f) Describe hydrostatic pressure test
- g) Describe Maximum Allowable Working Pressure (MAWP)

A-12 Pump Installation, Commissioning, and Startup (4%)

- a) Identify key elements of site drawings
- b) Locate critical information in an instruction and operation manual
- c) Identify key pump components and their item numbers in a parts manual
- d) List general safety consideration for operating a pump system

- e) Describe suitable pump foundation, grouting and anchoring as applicable for the installation
- f) Explain startup checklist, personnel, data collection, system settings, and planned sequence of actions
- g) Describe when priming is required

A-13 Maintenance (3%)

- a) Cite steps in a typical maintenance program for a pump system
- b) List tools and instruments typically required of pump system maintenance personnel
- c) List general safety considerations for operating a pump system
- d) Inspect mechanical seals and packing
- e) Understand the need for calibration of instruments

A-14 Troubleshooting (3%)

- a) List causes of insufficient pressure
- b) List causes of insufficient rate of flow
- c) List causes of increased power or power overload
- d) List causes of high vibration (1x, 2x, vane-pass frequencies)
- e) List causes of premature internal pump wear

A-15 Pump System Optimization and Analysis (2%)

- a) Describe pump Life Cycle Cost (LCC), each component and typical hierarchy of costs
- b) Define pump system optimization
- c) List broad categories to optimize a pumping system (lower head, lower flow rate, improve installation, improve control, etc.)

A-16 Markets and Applications (2%)

- a) List typical application considerations in market segment: Agricultural
- b) List typical application considerations in market segment: Chemical
- c) List typical application considerations in market segment: Commercial Building
- d) List typical application considerations in market segment: General Industrial
- e) List typical application considerations in market segment: Municipal
- f) List typical application considerations in market segment: Oil and Gas
- g) List typical application considerations in market segment: Power Generation
- h) List typical application considerations in market segment: Residential